Astronomy Stories
Pasadena, CA— The Giant Magellan Telescope (GMT) has passed a major milestone as 11 international partners—including Carnegie—approved its construction, which secures the project’s future and unlocks...
Explore this Story
Pasadena, CA— Type Ia supernovae are violent stellar explosions that shine as some of the brightest objects in the universe. But there are still many mysteries surrounding their origin—what kind of...
Explore this Story
Type Ia supernovae are violent stellar explosions that shine as some of the brightest objects in the universe. But there are still many mysteries surrounding their origin—what kind of star system...
Explore this Story
Two nights ago, for the first time in history, astronomers from University of Arizona and Carnegie's Yuri Beletsky at Las Campanas Observatory used the Clay Magellan telescope together with Magellan...
Explore this Story
Pasadena, CA- John Mulchaey has been appointed the new Crawford H. Greenewalt Director of the Carnegie Observatories. He is the eleventh director of the historic department, which was founded in 1904...
Explore this Story
Carnegie's John Mulchaey talks to NPR's Morning Edition about Edwin Hubble's work at the Mount Wilson Obeservatory and his famous Andromeda plates....
Explore this Story
A Carnegie-based search of nearby galaxies for their oldest stars has uncovered two stars in the Sculptor dwarf galaxy that were born shortly after the galaxy formed, approximately 13 billion years...
Explore this Story
Pasadena, CA— A Carnegie-based search of nearby galaxies for their oldest stars has uncovered two stars in the Sculptor dwarf galaxy that were born shortly after the galaxy formed, approximately 13...
Explore this Story

Pages

The Carnegie Irvine Galaxy Survey is obtaining high-quality optical and near-infrared images of several hundred of the brightest galaxies in the southern hemisphere sky, at Carnegie’s Las Campanas Observatory to investigate the structural properties of galaxies. For more see    http://cgs.obs....
Explore this Project
The recent discovery that the universe is expanding at an accelerating rate has profoundly affected physics. If the universe were gravity-dominated then it should be decelerating. These contrary results suggest a new form of “dark energy”—some kind of repulsive force—is driving the universe. To get...
Explore this Project
The Carnegie-Spitzer-IMACS (CSI) survey, currently underway at the Magellan-Baade 6.5m telescope in Chile, has been specifically designed to characterize normal galaxies and their environments at a distance of about 4 billion years post Big Bang, expresses by astronomers as  z=1.5. The survey...
Explore this Project
Staff member Nick Konidaris joined Carnegie in October 2017. He works on a variety of new optical instrumentation projects in astronomy. He  recently began working on a new development platform for the 40-inch Swope telescope at Carnegie's Las Campanas Observatory. It is called the Rapid Response...
Meet this Scientist
Looking far into space is looking back in time. Staff astronomer emeritus Alan Dressler began his career at Carnegie some years ago as a Carnegie Fellow. Today, he and colleagues use Magellan and the Hubble Space Telescope to study galaxy evolution—how galaxy structures and shapes change, the pace...
Meet this Scientist
 Barry Madore is widely known for his work on Cepheid variables—very bright pulsating stars used to determine distances in the universe—plus his research on peculiar galaxies, and the extragalactic distance scale. He divides his time between directing science for NED, the NASA/IPAC Extragalactic...
Meet this Scientist
You May Also Like...
Yuri Beletsky's recent image of  the lunar eclipse at  Carnegie's Las Campanas Observatory has been published by NASA as the Astronomy Picture of the Day, October 1, 2015.
Explore this Story
Pasadena, CA— New work from a team of scientists including Carnegie’s Josh Simon analyzed the chemical elements in the faintest known galaxy, called Segue 1, and determined that it is effectively a...
Explore this Story
In 2015, a star called KIC 8462852 caused quite a stir in and beyond the astronomy community due to a series of rapid, unexplained dimming events seen while it was being monitored by NASA’s Kepler...
Explore this Story

Explore Carnegie Science

Kit Whitten in the plate analysis room. Photo by Cynthia Hunt
May 3, 2018

Cataloging Reflections by Kit Whitten, Carnegie Observatories Library Intern

It is commonly believed that when looking for valuable treasure, the best place to look is the attic—after all, works by Caravaggio, Van Gogh, Rembrandt, and Jackson Pollack have been discovered in attics—but not everyone thinks to look in the basement. Yet institutions like Carnegie Observatories often keep the best stuff in the basement.

The underground vault at the Observatories houses the nation’s second-largest, single-institution collection of astronomical glass plates, which are thin sheets of glass with an emulsion image of celestial bodies.  Photographic plates preceded plastic

April 27, 2018

Former Carnegie fellow and current trustee Sandy Faber has been selected to receive the 2018 American Philosophical Society’s Magellanic Premium Medal.  The medal is the nation’s oldest for scientific achievement. It was established in 1786. It is awarded from time to time “ to the author of the best discovery or most useful invention related to navigation, astronomy, or natural philosophy…”

Dr. Faber is the University of California, Santa Cruz, University Professor of Astronomy and Astrophysics and has been a Carnegie trustee since 1985.  After receiving a B.A. in physics from Swarthmore College, she pursued her Ph.D. in astronomy at Harvard, which she received in 1972. Much of

April 5, 2018

Pasadena, CA—Pomona College junior and returning Carnegie Observatories intern Sal Fu was awarded a Barry M. Goldwater Scholarship in recognition of her academic and research success and to support her continued “academic study and research in the fields of science, mathematics, and engineering.” Fu has participated in the Carnegie Summer Undergraduate Research program over the past two summers, working with staff astronomer Josh Simon studying dwarf galaxies and streams of stars surrounding our Milky Way using data from the Sloan Digital Sky Survey.

“The Summer Undergraduate Research Program at the Carnegie Observatories provides undergraduate students the exciting opportunity to

Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Las Campanas Observatory
March 23, 2018

La Serena, Chile—Last week, scientists and staff from Carnegie’s Las Campanas Observatory volunteered for Astroday 2018 at a 170-year-old school in the nearby city of Las Serena, the Colegio Seminario Conciliar.

Organized by the Gemini Observatory, the daylong outreach event features activities including a planetarium, science projects, a 3-D movie, and night sky viewing. Several Chile-based astronomy facilities participated, both from the research and tourist sectors, all sharing the wonders of the universe with the community.

Since its inception in 2006, thousands of La Serena residents have participated in Astroday.

Led by Roberto Bermúdez, the Las Campanas

No content in this section.

The recent discovery that the universe is expanding at an accelerating rate has profoundly affected physics. If the universe were gravity-dominated then it should be decelerating. These contrary results suggest a new form of “dark energy”—some kind of repulsive force—is driving the universe. To get a grasp of dark energy, it is extremely important that scientists get the most accurate measurements possible of Type Ia supernovae. These are specific types of exploring stars with exceptional luminosity that allow astronomers to determine distances and the acceleration rate at different distances. At the moment, the reality of the accelerating universe remains controversial because of

Along with Alycia Weinberger and Ian Thompson, Alan Boss has been running the Carnegie Astrometric Planet Search (CAPS) program, which searches for extrasolar planets by the astrometric method, where the planet's presence is detected indirectly through the wobble of the host star around the center of mass of the system. With over eight years of CAPSCam data, they are beginning to see likely true astrometric wobbles beginning to appear. The CAPSCam planet search effort is on the verge of yielding a harvest of astrometrically discovered planets, as well as accurate parallactic distances to many young stars and M dwarfs. For more see  http://instrumentation.obs.carnegiescience.edu/ccd/caps.

The Earthbound Planet Search Program has discovered hundreds of planets orbiting nearby stars using telescopes at Lick Observatory, Keck Observatory, the Anglo-Australian Observatory, Carnegie's Las Campanas Observatory, and the ESO Paranal Observatory.  Our multi-national team has been collecting data for 30 years, using the Precision Doppler technique.  Highlights of this program include the detection of five of the first six exoplanets, the first eccentric planet, the first multiple planet system, the first sub-Saturn mass planet, the first sub-Neptune mass planet, the first terrestrial mass planet, and the first transit planet.Over the course of 30 years we have improved the

The Giant Magellan Telescope will be one member of the next class of super giant earth-based telescopes that promises to revolutionize our view and understanding of the universe. It will be constructed in the Las Campanas Observatory in Chile. Commissioning of the telescope is scheduled to begin in 2021.

The GMT has a unique design that offers several advantages. It is a segmented mirror telescope that employs seven of today’s largest stiff monolith mirrors as segments. Six off-axis 8.4 meter or 27-foot segments surround a central on-axis segment, forming a single optical surface 24.5 meters, or 80 feet, in diameter with a total collecting area of 368 square meters. The GMT will

Leopoldo Infante became the director of the Las Campanas Observatory on July 31, 2017.

Since 2009, Infante has been the founder and director of the Centre for Astro-Engineering at the Chilean university. He joined PUC as an assistant professor in 1990 and has been a full professor since 2006. He was one of the creators of PUC’s Department of Astronomy and Astrophysics, and served as its director from 2000 to 2006. He also established the Chilean Astronomical Society (SOCHIAS) and served as its president from 2009 to 2010.

Infante received his B.Sc. in physics at PUC. He then acquired a MSc. and Ph.D. in physics and astronomy from the University of Victoria in Canada.

Some 40 thousand tons of extraterrestrial material fall on Earth every year. This cosmic debris provides cosmochemist Conel Alexander with information about the formation of the Solar System, our galaxy, and perhaps the origin of life.

Alexander studies meteorites to determine what went on before and during the formation of our Solar System. Meteorites are fragments of asteroids—small bodies that originated between Mars and Jupiter—and are likely the last remnants of objects that gave rise to the terrestrial planets. He is particularly interested in the analysis of chondrules, millimeter-size spherical objects that are the dominant constituent of the most primitive types of

Staff member emeritus François Schweizer studies galaxy assembly and evolution by observing nearby galaxies, particularly how collisions and mergers affect their properties. His research has added to the awareness that these events are dominant processes in shaping galaxies and determining their stellar and gaseous contents.

When nearby galaxies collide and merge they yield valuable clues about processes that occurred much more frequently in the younger, distant universe. When two gas-rich galaxies collide, their pervasive interstellar gas gets compressed, clumps into dense clouds, and fuels the sudden birth of billions of new stars and thousands of star clusters.

Some of

Galacticus is not a super hero; it’s a super model used to determine the formation and evolution of the galaxies. Developed by Andrew Benson, the George Ellery Hale Distinguished Scholar in Theoretical Astrophysics, it is one of the most advanced models of galaxy formation available.

Rather than building his model around observational data, Benson’s Galacticus relies on known laws of physics and the so-called N-body problem, which predicts the motions of celestial bodies that interact gravitationally in groups. Galacticus’ now an open- source model produces results as stunning 3-D videos.

Some 80% of the matter in the universe cannot be seen. This unseen matter is believed