Astronomy Stories
Carnegie Science, Carnegie Institution, Carnegie Institution for Science, ESO, European Southern Observatory, M. Kornmesser
Pasadena, CA— Quasars are supermassive black holes that sit at the center of enormous galaxies, accreting matter. They shine so brightly that they are often referred to as beacons and are among the...
Explore this Story
Washington, DC— Dwarf galaxies are enigmas wrapped in riddles. Although they are the smallest galaxies, they represent some of the biggest mysteries about our universe. While many dwarf galaxies...
Explore this Story
Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Texas A&M,
Pasadena, CA—An international team of astronomers, including Carnegie’s Eric Persson, has charted the rise and fall of galaxies over 90 percent of cosmic history. Their work, which includes some of...
Explore this Story
Johanna Teske was awarded the third Postdoctoral Innovation and Excellence (PIE) Award, which is made through nominations from the department directors and chosen by the Office of the President. She...
Explore this Story
UGC1382
Carnegie’s Mark Seibert, Barry Madore, Jeff Rich, and team have discovered that what was believed since the 1960s to be a relatively boring, small elliptical galaxy dubbed UGC 1382 is really a...
Explore this Story
Pasadena, CA—Astronomers have believed since the 1960s that a galaxy dubbed UGC 1382 was a relatively boring, small elliptical galaxy. Ellipticals are the most common type of galaxy and lack the...
Explore this Story
Pasadena, CA— The Astronomical Society of the Pacific (ASP) has announced that the Carnegie Observatories’ postdoctoral associate Rachael Beaton will receive the 2016 Robert J. Trumpler Award. In...
Explore this Story
Washington, DC— Brown dwarfs are sometimes called failed stars. They’re stars’ dim, low-mass siblings and they fade in brightness over time. They’re fascinating to astronomers for a variety of...
Explore this Story

Pages

The Carnegie Irvine Galaxy Survey is obtaining high-quality optical and near-infrared images of several hundred of the brightest galaxies in the southern hemisphere sky, at Carnegie’s Las Campanas Observatory to investigate the structural properties of galaxies. For more see    http://cgs.obs....
Explore this Project
The Carnegie-Spitzer-IMACS (CSI) survey, currently underway at the Magellan-Baade 6.5m telescope in Chile, has been specifically designed to characterize normal galaxies and their environments at a distance of about 4 billion years post Big Bang, expresses by astronomers as  z=1.5. The survey...
Explore this Project
The fund supports a postdoctoral fellowship in astronomy that rotates between the Carnegie Science departments of Terrestrial Magnetism in Washington, D.C., and the Observatories in Pasadena California. 
Explore this Project
John Mulchaey, director of the Observatories, serves as co-interim president of Carnegie as of January 1, 2018. He investigates groups and clusters of galaxies, elliptical galaxies, dark matter—the invisible material that makes up most of the universe—active galaxies and black holes. He is also a...
Meet this Scientist
Andrew Newman works in several areas in extragalactic astronomy, including the distribution of dark matter--the mysterious, invisible  matter that makes up most of the universe--on galaxies, the evolution of the structure and dynamics of massive early galaxies including dwarf galaxies, ellipticals...
Meet this Scientist
The entire universe—galaxies, stars, and planets—originally condensed from a vast network of tenuous, gaseous filaments, known as the intergalactic medium, or the gaseous cosmic web. Most of the matter in this giant reservoir has never been incorporated into galaxies; it keeps floating about in...
Meet this Scientist
You May Also Like...
Pasadena, CA— A team of astronomers including Carnegie’s Daniel Kelson have set a new distance record for finding the farthest galaxy yet seen in the universe. By combining the power of NASA's Hubble...
Explore this Story
Pasadena, CA--A team of astronomers has discovered the most distant cluster of red galaxies ever observed using FourStar, a new and powerful near-infrared camera on the 6.5m Magellan Baade Telescope...
Explore this Story
Brown dwarfs are sometimes called failed stars. They’re stars’ dim, low-mass siblings and they fade in brightness over time. They’re fascinating to astronomers for a variety of reasons, but much...
Explore this Story

Explore Carnegie Science

This artist’s impression shows the temperate planet Ross 128 b, with its red dwarf parent star in the background. It is provided courtesy of ESO/M. Kornmesser.
July 10, 2018

Pasadena, CA—Last autumn, the world was excited by the discovery of an exoplanet called Ross 128 b, which is just 11 light years away from Earth. New work from a team led by Diogo Souto of Brazil’s Observatório Nacional and including Carnegie’s Johanna Teske has for the first time determined detailed chemical abundances of the planet’s host star, Ross 128.

Understanding which elements are present in a star in what abundances can help researchers estimate the makeup of the exoplanets that orbit them, which can help predict how similar the planets are to the Earth.

“Until recently, it was difficult to obtain detailed chemical abundances for this kind of star,” said lead

An artist’s conception of a radio jet spewing out fast-moving material from the newly discovered quasar. Artwork by Robin Dienel, courtesy of Carnegie Institution for Science.
July 9, 2018

Pasadena, CA—Carnegie’s Eduardo Bañados led a team that found a quasar with the brightest radio emission ever observed in the early universe, due to it spewing out a jet of extremely fast-moving material.

Bañados’ discovery was followed up by Emmanuel Momjian of the National Radio Astronomy Observatory, which allowed the team to see with unprecedented detail the jet shooting out of a quasar that formed within the universe’s first billion years of existence. 

The findings, published in two papers in The Astrophysical Journal, will allow astronomers to better probe the universe’s youth during an important period of transition to its current state.

Quasars are comprised

May 28, 2018

 

Washington, DC—Un grupo de astrónomos del Observatorio Las Campanas, de Carnegie, incluyendo a Mark Phillips y Guillermo Blanc, junto a Miguel Roth de la Organización Telescopio Magallanes Gigante, abogaron en contra de la contaminación lumínica en una reunión que se realizó la semana pasada y que contó con la presencia de diversas autoridades chilenas.

Combatir la contaminación lumínica no se trata de no iluminar, sino de iluminar bien, explicó Blanc. Él fue el encargado de presentar los efectos que produce la luz de las ciudades, carreteras e instalaciones mineras, en las cercanías de algunos de los mayores observatorios astronómicos instalados en el país.

Una de

May 25, 2018

Washington, DC—A group of astronomers from Carnegie’s Las Campanas Observatory including Mark Phillips and Guillermo Blanc, along with Miguel Roth from the Giant Magellan Telescope Organization, presented the case against light pollution to Chilean authorities earlier this month.

Combating light pollution is not about demanding complete darkness, it is about illuminating human spaces well, Blanc explained. He reported on the effects of light from cities, highways, and mines near the nation’s biggest astronomical observatories.

Of particular concern for the researchers and technical staff at Las Campanas and nearby La Silla is the Algarrobo highway. Blanc suggested downward-

No content in this section.

The Carnegie-Spitzer-IMACS (CSI) survey, currently underway at the Magellan-Baade 6.5m telescope in Chile, has been specifically designed to characterize normal galaxies and their environments at a distance of about 4 billion years post Big Bang, expresses by astronomers as  z=1.5.

The survey selection is done using the Spitzer Space Telescope Legacy fields, which provides as close a selection by stellar mass as possible.

Using the IMACS infrared camera, the survey goal is to study galaxies down to low light magnitudes. The goal is to reduce the variance in the density of massive galaxies at these distances and times to accurately trace the evolution of the galaxy mass

The fund supports a postdoctoral fellowship in astronomy that rotates between the Carnegie Science departments of Terrestrial Magnetism in Washington, D.C., and the Observatories in Pasadena California. 

The recent discovery that the universe is expanding at an accelerating rate has profoundly affected physics. If the universe were gravity-dominated then it should be decelerating. These contrary results suggest a new form of “dark energy”—some kind of repulsive force—is driving the universe. To get a grasp of dark energy, it is extremely important that scientists get the most accurate measurements possible of Type Ia supernovae. These are specific types of exploring stars with exceptional luminosity that allow astronomers to determine distances and the acceleration rate at different distances. At the moment, the reality of the accelerating universe remains controversial because of

The Giant Magellan Telescope will be one member of the next class of super giant earth-based telescopes that promises to revolutionize our view and understanding of the universe. It will be constructed in the Las Campanas Observatory in Chile. Commissioning of the telescope is scheduled to begin in 2021.

The GMT has a unique design that offers several advantages. It is a segmented mirror telescope that employs seven of today’s largest stiff monolith mirrors as segments. Six off-axis 8.4 meter or 27-foot segments surround a central on-axis segment, forming a single optical surface 24.5 meters, or 80 feet, in diameter with a total collecting area of 368 square meters. The GMT will

Like some other Carnegie astronomers, staff associate Jeffrey Crane blends science with technology. His primary interests are instrumentation, the Milky Way and the neighboring Local Group of galaxies, in addition to extrasolar planets. In 2004, then-research associate Crane joined Steve Shectman, Ian Thompson, and the Carnegie team to design the Planet Finder Spectrograph (PFS), now installed and operational on the Magellan Clay telescope.

Radial velocities are the speeds and directions of stars moving away from or toward the Earth.  Extrasolar planet hunters use them to detect the telltale wobbles of stars that are gravitationally tugged by orbiting planets. Astronomical

With the proliferation of discoveries of planets orbiting other stars, the race is on to find habitable worlds akin to the Earth. At present, however, extrasolar planets less massive than Saturn cannot be reliably detected. Astrophysicist John Chambers models the dynamics of these newly found giant planetary systems to understand their formation history and to determine the best way to predict the existence and frequency of smaller Earth-like worlds.

As part of this research, Chambers explores the basic physical, chemical, and dynamical aspects that led to the formation of our own Solar System--an event that is still poorly understood. His ultimate goal is to determine if similar

Staff member emeritus François Schweizer studies galaxy assembly and evolution by observing nearby galaxies, particularly how collisions and mergers affect their properties. His research has added to the awareness that these events are dominant processes in shaping galaxies and determining their stellar and gaseous contents.

When nearby galaxies collide and merge they yield valuable clues about processes that occurred much more frequently in the younger, distant universe. When two gas-rich galaxies collide, their pervasive interstellar gas gets compressed, clumps into dense clouds, and fuels the sudden birth of billions of new stars and thousands of star clusters.

Some of

Some 40 thousand tons of extraterrestrial material fall on Earth every year. This cosmic debris provides cosmochemist Conel Alexander with information about the formation of the Solar System, our galaxy, and perhaps the origin of life.

Alexander studies meteorites to determine what went on before and during the formation of our Solar System. Meteorites are fragments of asteroids—small bodies that originated between Mars and Jupiter—and are likely the last remnants of objects that gave rise to the terrestrial planets. He is particularly interested in the analysis of chondrules, millimeter-size spherical objects that are the dominant constituent of the most primitive types of