Astronomy Stories
Pasadena, CA—Type II supernovae are formed when massive stars collapse, initiating giant explosions. It is thought that stars emit a burst of mass as a precursor to the supernova explosion. If this...
Explore this Story
Washington, D.C.— An international team of scientists, including Carnegie’s Paul Butler, has discovered that Tau Ceti, one of the closest and most Sun-like stars, may have five planets. Their work is...
Explore this Story
Pasadena, CA— A team of astronomers including Carnegie’s Daniel Kelson have set a new distance record for finding the farthest galaxy yet seen in the universe. By combining the power of NASA's Hubble...
Explore this Story
Washington, D.C.—Astronomers have discovered a new super-Earth in the habitable zone, where liquid water and a stable atmosphere could reside, around the nearby star HD 40307. It is one of three new...
Explore this Story
Washington, D.C.--Scientists with the Giant Magellan Telescope Organization have completed the most challenging large astronomical mirror ever made. The mirror will be part of the 25-meter Giant...
Explore this Story
Pasadena, CA— A team of astronomers, led by Wendy Freedman, director of the Carnegie Observatories, have used NASA's Spitzer Space Telescope...
Explore this Story
Pasadena, CA— With the combined power of NASA's Spitzer and Hubble Space Telescopes, as well as a cosmic magnification effect, a team of astronomers, including Carnegie’s Daniel Kelson, have spotted...
Explore this Story
Washington, D.C.—Type Ia supernovae are violent stellar explosions. Observations of their brightness are used to determine distances in the universe and have shown scientists that the universe is...
Explore this Story

Pages

Along with Alycia Weinberger and Ian Thompson, Alan Boss has been running the Carnegie Astrometric Planet Search (CAPS) program, which searches for extrasolar planets by the astrometric method, where the planet's presence is detected indirectly through the wobble of the host star around the center...
Explore this Project
The Carnegie Irvine Galaxy Survey is obtaining high-quality optical and near-infrared images of several hundred of the brightest galaxies in the southern hemisphere sky, at Carnegie’s Las Campanas Observatory to investigate the structural properties of galaxies. For more see    http://cgs.obs....
Explore this Project
The Earthbound Planet Search Program has discovered hundreds of planets orbiting nearby stars using telescopes at Lick Observatory, Keck Observatory, the Anglo-Australian Observatory, Carnegie's Las Campanas Observatory, and the ESO Paranal Observatory.  Our multi-national team has been collecting...
Explore this Project
With the proliferation of discoveries of planets orbiting other stars, the race is on to find habitable worlds akin to the Earth. At present, however, extrasolar planets less massive than Saturn cannot be reliably detected. Astrophysicist John Chambers models the dynamics of these newly found giant...
Meet this Scientist
The entire universe—galaxies, stars, and planets—originally condensed from a vast network of tenuous, gaseous filaments, known as the intergalactic medium, or the gaseous cosmic web. Most of the matter in this giant reservoir has never been incorporated into galaxies; it keeps floating about in...
Meet this Scientist
Gwen Rudie
Gwen Rudie studies the chemical and physical properties of very distant galaxies and their surrounding gas in order to further our understanding of the processes that are central to the formation and development of galaxies. Critical to this research is our ability to trace the raw materials of...
Meet this Scientist
You May Also Like...
How far away is that galaxy?  Our entire understanding of the Universe is based on knowing the distances to other galaxies, yet this seemingly-simple question turns out to be fiendishly difficult to...
Explore this Story
On Friday, March 23, the first blast (Big Bang Event) occurred at Las Campanas Peak in Chile, at high noon US Eastern Daylight Time. It marked the beginning of mountain leveling and site preparation...
Explore this Story
Pasadena, CA –The Giant Magellan Telescope Organization (GMTO) announces the appointment of physicist Robert N. Shelton to become its president, effective February 20, 2017. Shelton will lead the...
Explore this Story

Explore Carnegie Science

August 9, 2018

Washington, D.C.—Observatories NASA Hubble Postdoctoral Fellow Maria Drout will receive the tenth Postdoctoral Innovation and Excellence Award (PIE). These awards are made through nominations from the departments and are chosen by the Office of the President. The recipients are awarded a cash prize for their exceptionally creative approaches to science, strong mentoring, and contributing to the sense of campus community.

Maria Drout was one of four Carnegie astronomers who, along with colleagues from UC Santa Cruz, provided the first-ever glimpse of two neutron stars colliding last August. She was first author on a Science paper, which measured the changing light from that merger

August 2, 2018

Pasadena, CA—What happens when a star behaves like it exploded, but it’s still there?

About 170 years ago, astronomers witnessed a major outburst by Eta Carinae, the brightest known star in our Milky Way galaxy. The blast unleashed almost as much energy as a standard supernova explosion.

Yet, Eta Carinae survived.

An explanation for the eruption has eluded astrophysicists, but Carnegie telescopes played an important role in solving the mystery.

Researchers can’t t a time machine back to the mid-1800s to observe the outburst with modern technology. However, astronomers can use nature’s own “time machine,” courtesy of the fact that light travels at a finite

This artist’s impression shows the temperate planet Ross 128 b, with its red dwarf parent star in the background. It is provided courtesy of ESO/M. Kornmesser.
July 10, 2018

Pasadena, CA—Last autumn, the world was excited by the discovery of an exoplanet called Ross 128 b, which is just 11 light years away from Earth. New work from a team led by Diogo Souto of Brazil’s Observatório Nacional and including Carnegie’s Johanna Teske has for the first time determined detailed chemical abundances of the planet’s host star, Ross 128.

Understanding which elements are present in a star in what abundances can help researchers estimate the makeup of the exoplanets that orbit them, which can help predict how similar the planets are to the Earth.

“Until recently, it was difficult to obtain detailed chemical abundances for this kind of star,” said lead

An artist’s conception of a radio jet spewing out fast-moving material from the newly discovered quasar. Artwork by Robin Dienel, courtesy of Carnegie Institution for Science.
July 9, 2018

Pasadena, CA—Carnegie’s Eduardo Bañados led a team that found a quasar with the brightest radio emission ever observed in the early universe, due to it spewing out a jet of extremely fast-moving material.

Bañados’ discovery was followed up by Emmanuel Momjian of the National Radio Astronomy Observatory, which allowed the team to see with unprecedented detail the jet shooting out of a quasar that formed within the universe’s first billion years of existence. 

The findings, published in two papers in The Astrophysical Journal, will allow astronomers to better probe the universe’s youth during an important period of transition to its current state.

Quasars are comprised

No content in this section.

The recent discovery that the universe is expanding at an accelerating rate has profoundly affected physics. If the universe were gravity-dominated then it should be decelerating. These contrary results suggest a new form of “dark energy”—some kind of repulsive force—is driving the universe. To get a grasp of dark energy, it is extremely important that scientists get the most accurate measurements possible of Type Ia supernovae. These are specific types of exploring stars with exceptional luminosity that allow astronomers to determine distances and the acceleration rate at different distances. At the moment, the reality of the accelerating universe remains controversial because of

The Carnegie Irvine Galaxy Survey is obtaining high-quality optical and near-infrared images of several hundred of the brightest galaxies in the southern hemisphere sky, at Carnegie’s Las Campanas Observatory to investigate the structural properties of galaxies. For more see    http://cgs.obs.carnegiescience.edu/CGS/Home.html

Along with Alycia Weinberger and Ian Thompson, Alan Boss has been running the Carnegie Astrometric Planet Search (CAPS) program, which searches for extrasolar planets by the astrometric method, where the planet's presence is detected indirectly through the wobble of the host star around the center of mass of the system. With over eight years of CAPSCam data, they are beginning to see likely true astrometric wobbles beginning to appear. The CAPSCam planet search effort is on the verge of yielding a harvest of astrometrically discovered planets, as well as accurate parallactic distances to many young stars and M dwarfs. For more see  http://instrumentation.obs.carnegiescience.edu/ccd/caps.

The fund supports a postdoctoral fellowship in astronomy that rotates between the Carnegie Science departments of Terrestrial Magnetism in Washington, D.C., and the Observatories in Pasadena California. 

Galacticus is not a super hero; it’s a super model used to determine the formation and evolution of the galaxies. Developed by Andrew Benson, the George Ellery Hale Distinguished Scholar in Theoretical Astrophysics, it is one of the most advanced models of galaxy formation available.

Rather than building his model around observational data, Benson’s Galacticus relies on known laws of physics and the so-called N-body problem, which predicts the motions of celestial bodies that interact gravitationally in groups. Galacticus’ now an open- source model produces results as stunning 3-D videos.

Some 80% of the matter in the universe cannot be seen. This unseen matter is believed

Nick Konidaris is a staff scientist at the Carnegie Observatories and Instrument Lead for the SDSS-V Local Volume Mapper (LVM). He works on a broad range of new optical instrumentation projects in astronomy and remote sensing. Nick's projects range from experimental to large workhorse facilities. On the experimental side, he recently began working on a new development platform for the 40-inch Swope telescope at Carnegie's Las Campanas Observatory that will be used to explore and understand the explosive universe.

 Nick and his colleagues at the Department of Global Ecology are leveraging the work on Swope to develop a new airborne spectrograph that will be used to provide a direct

Some 40 thousand tons of extraterrestrial material fall on Earth every year. This cosmic debris provides cosmochemist Conel Alexander with information about the formation of the Solar System, our galaxy, and perhaps the origin of life.

Alexander studies meteorites to determine what went on before and during the formation of our Solar System. Meteorites are fragments of asteroids—small bodies that originated between Mars and Jupiter—and are likely the last remnants of objects that gave rise to the terrestrial planets. He is particularly interested in the analysis of chondrules, millimeter-size spherical objects that are the dominant constituent of the most primitive types of

Staff astronomer emeritus Eric Persson headed a group that develops and uses telescope instrumentation to exploit new near-infrared (IR) imaging array detectors. The team built a wide-field survey camera for the du Pont 2.5-meter telescope at Carnegie’s Las Campanas Observatory in Chile, and the first of two cameras for the Magellan Baade telescope. Magellan consortium astronomers use the Baade camera for various IR-imaging projects, while his group focuses on distant galaxies and supernovae.

Until recently, it was difficult to find large numbers of galaxies at near-IR wavelengths. But significant advances in the size of IR detector arrays have allowed the Persson group to survey