Astronomy Stories
It isn’t often that our Capital Science Evening speaker hints at soon-to-be-breaking news right from the stage. Tuesday night, Pierre Cox, Director of the Atacama Large Milimiter/submillimeter...
Explore this Story
Fotografía de Yuri Beletsky, cortesía de la Carnegie Institution for Science.
Pasadena, California— El universo está lleno de miles de millones de galaxias—pero su distribución en el espacio está lejos de ser uniforme. ¿Por qué...
Explore this Story
The Magellan telescopes at LCO by Yuri Beletsky.
Pasadena, CA— The universe is full of billions of galaxies—but their distribution across space is far from uniform. Why do we see so much structure in the universe today and how did it...
Explore this Story
Caltech logo
The Carnegie Institution for Science is consolidating our California research departments into an expanded presence in Pasadena. With this move, we are building on our existing relationship with...
Explore this Story
 Illustration of DS Tuc AB by M. Weiss, CfA.
Pasadena, CA— A new kind of astronomical observation helped reveal the possible evolutionary history of a baby Neptune-like exoplanet. To study a very young planet called DS Tuc Ab, a Harvard...
Explore this Story
John Mulchaey
Pasadena, CA—John Mulchaey, Director and Crawford H. Greenewalt Chair of the Carnegie Observatories, was presented with a Humanitarian STAR Award by the honor...
Explore this Story
Washington, DC— Carnegie astronomers Stephen Shectman and Alycia Weinberger were selected for the inaugural class of Fellows of the American Astronomical Society in recognition of their “...
Explore this Story
Vera Rubin, courtesy of the Carnegie Institution for Science
Washington, DC— The Large Synoptic Survey Telescope and its joint funding agencies, the National Science Foundation and Department of Energy, announced Monday that it will be renamed the Vera C...
Explore this Story

Pages

The Earthbound Planet Search Program has discovered hundreds of planets orbiting nearby stars using telescopes at Lick Observatory, Keck Observatory, the Anglo-Australian Observatory, Carnegie's Las Campanas Observatory, and the ESO Paranal Observatory.  Our multi-national team has been...
Explore this Project
The fund supports a postdoctoral fellowship in astronomy that rotates between the Carnegie Science departments of Terrestrial Magnetism in Washington, D.C., and the Observatories in Pasadena California. 
Explore this Project
The Giant Magellan Telescope will be one member of the next class of super giant earth-based telescopes that promises to revolutionize our view and understanding of the universe. It will be constructed in the Las Campanas Observatory in Chile. Commissioning of the telescope is scheduled to begin in...
Explore this Project
Nick Konidaris is a staff scientist at the Carnegie Observatories and Instrument Lead for the SDSS-V Local Volume Mapper (LVM). He works on a broad range of new optical instrumentation projects in astronomy and remote sensing. Nick's projects range from experimental to large workhorse...
Meet this Scientist
Like some other Carnegie astronomers, staff associate Jeffrey Crane blends science with technology. His primary interests are instrumentation, the Milky Way and the neighboring Local Group of galaxies, in addition to extrasolar planets. In 2004, then-research associate Crane joined Steve Shectman,...
Meet this Scientist
While the planets in our Solar System are astonishingly diverse, all of them move around the Sun in approximately the same orbital plane, in the same direction, and primarily in circular orbits. Over the past 25 years Butler's work has focused on improving the measurement precision of stellar...
Meet this Scientist
You May Also Like...
Carnegie astronomer and Vice President of the Giant Magellan Telescope (GMT), Patrick McCarthy, has been appointed as the first Director of the National Science Foundation’s newly formed...
Explore this Story
Pasadena, CA— A team of astronomers from three institutions has developed a new type of telescope camera that makes higher resolution images than ever before, the culmination of 20 years of...
Explore this Story
Popular Mechanics: Clyde Tombaugh still discovered the dwarf planet, but this is the latest "precovery" image to be unearthed. More
Explore this Story

Explore Carnegie Science

Fotografía de Yuri Beletsky, cortesía de la Carnegie Institution for Science.
April 27, 2020

Pasadena, California— El universo está lleno de miles de millones de galaxias—pero su distribución en el espacio está lejos de ser uniforme. ¿Por qué vemos tantas estructuras en el universo hoy y cómo se formó y creció todo?

Una encuesta de decenas de miles de galaxias, realizada durante 10 años utilizando el telescopio de Magallanes Baade perteneciente al Observatorio Las Campanas de Carnegie en Chile, proporcionó un enfoque para responder a este misterio fundamental. Los resultados, liderados por Daniel Kelson, de Carnegie, fueron publicados en Monthly Notices of the Royal Astronomical Society.

The Magellan telescopes at LCO by Yuri Beletsky.
April 27, 2020

Pasadena, CA— The universe is full of billions of galaxies—but their distribution across space is far from uniform. Why do we see so much structure in the universe today and how did it all form and grow? 

A 10-year survey of tens of thousands of galaxies made using the Magellan Baade Telescope at Carnegie’s Las Campanas Observatory in Chile provided a new approach to answering this fundamental mystery. The results, led by Carnegie’s Daniel Kelson, are published in Monthly Notices of the Royal Astronomical Society. 

“How do you describe the indescribable?” asks Kelson. “By taking an entirely new approach to the problem.

Caltech logo
March 17, 2020

The Carnegie Institution for Science is consolidating our California research departments into an expanded presence in Pasadena. With this move, we are building on our existing relationship with Caltech, with a goal of broadening our historic collaborations in astronomy and astrophysics and pursuing new opportunities in ecology and plant biology that will support the global fight against climate change.

This plan, which affects our research operations in Pasadena and Palo Alto, reflects Carnegie’s ongoing efforts to extend our leadership in space, Earth, and life sciences and to enhance our ability to explore new frontiers.

In selecting our Pasadena location, we

 Illustration of DS Tuc AB by M. Weiss, CfA.
March 9, 2020

Pasadena, CA— A new kind of astronomical observation helped reveal the possible evolutionary history of a baby Neptune-like exoplanet.

To study a very young planet called DS Tuc Ab, a Harvard & Smithsonian Center for Astrophysics-led team that included six Carnegie astronomers—Johanna Teske, Sharon Wang, Stephen Shectman, Paul Butler, Jeff Crane, and Ian Thompson—developed a new observational modeling tool. Their work will be published in The Astrophysical Journal Letters and represents the first time the orbital tilt of a planet younger than 45 million years—or about 1/100th the age of the Solar System—has been measured.

“A

No content in this section.

The Carnegie Irvine Galaxy Survey is obtaining high-quality optical and near-infrared images of several hundred of the brightest galaxies in the southern hemisphere sky, at Carnegie’s Las Campanas Observatory to investigate the structural properties of galaxies. For more see    http://cgs.obs.carnegiescience.edu/CGS/Home.html

The fund supports a postdoctoral fellowship in astronomy that rotates between the Carnegie Science departments of Terrestrial Magnetism in Washington, D.C., and the Observatories in Pasadena California. 

Along with Alycia Weinberger and Ian Thompson, Alan Boss has been running the Carnegie Astrometric Planet Search (CAPS) program, which searches for extrasolar planets by the astrometric method, where the planet's presence is detected indirectly through the wobble of the host star around the center of mass of the system. With over eight years of CAPSCam data, they are beginning to see likely true astrometric wobbles beginning to appear. The CAPSCam planet search effort is on the verge of yielding a harvest of astrometrically discovered planets, as well as accurate parallactic distances to many young stars and M dwarfs. For more see  http://instrumentation.obs.carnegiescience.edu/

The Carnegie-Spitzer-IMACS (CSI) survey, currently underway at the Magellan-Baade 6.5m telescope in Chile, has been specifically designed to characterize normal galaxies and their environments at a distance of about 4 billion years post Big Bang, expresses by astronomers as  z=1.5.

The survey selection is done using the Spitzer Space Telescope Legacy fields, which provides as close a selection by stellar mass as possible.

Using the IMACS infrared camera, the survey goal is to study galaxies down to low light magnitudes. The goal is to reduce the variance in the density of massive galaxies at these distances and times to accurately trace the evolution of the galaxy mass

Josh Simon uses observations of nearby galaxies to study problems related to dark matter, chemical evolution, star formation, and the process of galaxy evolution.

In one area he looks at peculiarly dark galaxies. Interestingly, some galaxies are so dark they glow with the light of just a few hundred Suns. Simon and colleagues have determined that a tiny, very dim galaxy orbiting the Milky Way, called Segue 1, is the darkest galaxy ever found and has the highest dark matter density ever found. His team has also laid to rest a debate about whether Segue 1 really is a galaxy or a globular cluster—a smaller group of stars that lacks dark matter. Their findings make Segue 1 a

Stephen Shectman blends his celestial interests with his gift of developing novel telescope instrumentation. He investigates the large-scale structure of the galaxy distribution; searches for ancient stars that have few elements; develops astronomical instruments; and constructs large telescopes. Shectman was the former project scientist for Magellan and is largely responsible for the superb quality of 6.5-meter telescopes. He is now a member of the Giant Magellan Telescope Project Scientists’ Working Group.

 To understand large-scale structure, Shectman has participated in several galaxy surveys. He and collaborators discovered a particularly large void in the galaxy

We are all made of stardust. Almost all of the chemical elements were produced by nuclear reactions in the interiors of stars. When a star dies a fraction of the elements is released into the inter-stellar gas clouds, out of which successive generations of stars form.

 Astronomers have a basic understanding of this chemical enrichment cycle, but chemical evolution and nulceosynthesis are still not fully understood. Andrew McWilliam measures the detailed chemical composition of Red Giant stars, which are about as old as the galaxy and retain their original chemical composition.  He is seeking answer to questions such as: What are the sites of nucleosynthesis? What

Mark Phillips is the Las Campanas Observatory (LCO) Director Emeritus. From 2006 to 2017 Phillips served as the Associate Director for Magellan, and from 2014 to 2017 he was the interim LCO Director. He is a world-renowned supernova expert. Most stars die quietly by cooling down and “turning off” when they have exhausted their nuclear fuel. But, a few stars end in a gigantic thermonuclear explosion known as a supernova. These objects remain extremely bright for a few weeks, sometimes outshining the galaxies in which they reside. Their extreme brightness at maximum makes them potentially powerful “standard candles”—baselines for probing