The Geophysical Laboratory has made important advances in the growth of diamond by chemical vapor deposition (CVD).  Methods have been developed to produce single-crystal diamond at low pressure having a broad range of properties.

Scientific Area: 

Explore Carnegie Science

March 13, 2019

Carolyn Beaumont, a senior at the Potomac School in McLean VA, won 5th place in the 78th Regeneron Science Talent Search. During the summer of 2018, she worked with Geophysical Laboratory staff members George Cody and Bjorn Mysen on a project to shed light on the molecular details of how water interacts with silicate melts. During her time, she learned how to run all aspects of the experiment, including how to operate a piston cylinder pressure apparatus that generates pressures on the order of 1.5 GPa and temperatures in excess of 1400°C. She also used molecular spectroscopy and nuclear magnetic resonance spectroscopy, to obtain detailed

September 20, 2018

A new Venture Grant has been awarded to the Geophysical Laboratory’s Dionysis Foustoukos and Sue Rhee of the Department of Plant Biology, with colleague Costantino Vetriani of Rutgers University for their project Deciphering Life Functions in Extreme Environments.

Carnegie Science Venture Grants ignore conventional boundaries and bring together cross-disciplinary researchers with fresh eyes to explore different questions. Each grant provides $100,000 support for two years with the hope for surprising outcomes. The grants are generously supported, in part, by trustee Michael Wilson and his wife Jane and by the Ambrose Monell Foundation.

Deep sea hydrothermal vents

Unraveling the properties of fluid metallic hydrogen could help scientists unlock the mysteries of Jupiter’s formation and internal structure. Credit: Mark Meamber, LLNL.
August 15, 2018

Washington, DC—Lab-based mimicry allowed an international team of physicists including Carnegie’s Alexander Goncharov to probe hydrogen under the conditions found in the interiors of giant planets—where experts believe it gets squeezed until it becomes a liquid metal, capable of conducting electricity. Their work is published in Science.

Hydrogen is the most-abundant element in the universe and the simplest—comprised of only a one proton and one electron in each atom. But that simplicity is deceptive, because there is still so much to learn about it, including its behavior under conditions not found on Earth.

For example, although hydrogen on the

Nitrogen is the dominant gas in Earth’s atmosphere, where it is most-commonly bonded with itself in diatomic N2 molecules. New work indicate that it becomes a metallic fluid when subjected to the extreme pressure and temperature conditions found deep insi
July 9, 2018

Washington, DC—New work from a team led by Carnegie’s Alexander Goncharov confirms that nitrogen, the dominant gas in Earth’s atmosphere, becomes a metallic fluid when subjected to the extreme pressure and temperature conditions found deep inside the Earth and other planets. Their findings are published by Nature Communications.

Nitrogen is one of the most-common elements in the universe and is crucial to life on Earth. In living organisms, it is a key part of the makeup of both the nucleic acids that form genetic material and the amino acids that make up proteins. It comprises nearly 80 percent of the Earth’s atmosphere.

But what about how nitrogen

No content in this section.

CDAC is a multisite, interdisciplinary center headquartered at Carnegie to advance and perfect an extensive set of high pressure and temperature techniques and facilities, to perform studies on a broad range of materials in newly accessible pressure and temperature regimes, and to integrate and coordinate static, dynamic and theoretical results. The research objectives include making highly accurate measurements to understand the transitions of materials into different phases under the multimegabar pressure rang; determine the electronic and magnetic properties of solids and fluid to multimegabar pressures and elevated temperatures; to bridge the gap between static and dynamic

The Energy Frontier Research in Extreme Environments Center (EFree) was established to accelerate the discovery and synthesis of kinetically stabilized, energy-related materials using extreme conditions. Partners in this Carnegie-led center include world-leading groups in five universities—Caltech, Cornell, Penn State, Lehigh, and Colorado School of Mines—and will use facilities built and managed by the Geophysical Laboratory at Argonne, Brookhaven, and Oak Ridge National Laboratories. Nine Geophysical Laboratory scientists will participate in the effort, along with Russell Hemley as director and Tim Strobel as associate director.

To achieve their goal, EFree personnel

Evolutionary geneticist Moises Exposito-Alonso joins the Department of Plant Biology as a staff associate in the summer of 2019. He investigates whether and how plants will evolve to keep pace with climate change by conducting large-scale ecological and genome sequencing experiments. He also develops computational methods to derive fundamental principles of evolution, such as how fast natural populations acquire new mutations and how past climates shaped continental-scale biodiversity patterns. His goal is to use these first principles and computational approaches to forecast evolutionary outcomes of populations under climate change to anticipate potential future

Staff Associate Kamena Kostova joined the Department of Embryology in November 2018. She studies ribosomes, the factory-like structures inside cells that produce proteins. Scientists have known about ribosome structure, function, and biogenesis for some time. But, a major unanswered question is how cells monitor the integrity of the ribosome itself. Problems with ribosomes have been associated with diseases including neurodegeneration and cancer. The Kostova lab investigates the fundamental question of how cells respond when their ribosomes break down using mass spectrometry, functional genomics methods, and CRISPR genome editing.

Kostova received a B.S. in Biology from the

Sally June Tracy applies cutting-edge experimental and analytical techniques to understand the fundamental physical behavior of materials at extreme conditions. She uses dynamic compression techniques with high-flux X-ray sources to probe the structural changes and phase transitions in materials at conditions that mimic impacts and the interiors of terrestrial and exoplanets. She is also an expert in nuclear resonant scattering and synchrotron X-ray diffraction. She uses these techniques to understand novel behavior at the electronic level.  Tracy received her Ph.D. from the California Institute of

The Ludington lab investigates complex ecological dynamics from microbial community interactions using the fruit fly  Drosophila melanogaster. The fruit fly gut carries numerous microbial species, which can be cultured in the lab. The goal is to understand the gut ecology and how it relates to host health, among other questions, by taking advantage of the fast time-scale and ease of studying the fruit fly in controlled experiments.