Carnegie Academy for Science Education

Scientific literacy is now recognized to be crucial for our nation's progress in the 21st century.

The Carnegie Institution, a pre-eminent basic research organization, has fostered the development of scientific knowledge since the early 20th century. For many years, this meant the training of graduate students and postdoctoral fellows in the Institution's laboratories, located in Washington, DC and around the country.

In 1989, Maxine Singer, then president of Carnegie, founded First Light, a Saturday science school for children. This was the start of the Carnegie Academy for Science Education (CASE) whose goal is to encourage interest in science among school children and teachers in Washington, DC. First Light remains a lively program for children.

Since 1994, CASE has offered professional development for DC teachers of science, mathematics and technology. Emphasis in all programs is on inquiry-based, hands-on approaches to learn and teach the processes and content of school science. For more click here

Scientific Area: 

Explore Carnegie Science

November 10, 2016

Baltimore, MD—A first-of-its-kind study on almost 20,000 K-12 underrepresented public school students shows that Project BioEYES, based at Carnegie’s Department of Embryology, is effective at increasing students’ science knowledge and positive attitudes about science. Younger students had the greatest attitude changes. The study covered five years and tested students before and after the one-week BioEYES program. The research is published in the November 10, 2016, issue of PLOS Biology.

BioEYES (www.bioeyes.org) uses live zebrafish to teach basic scientific principles, animal development, and genetics. The zebrafish embryo is clear, making it ideal for observations. Each BioEYES

June 8, 2016

Baltimore, MD— Tiny transparent zebrafish are changing lives through the BioEYES program. A former BioEYES student in Baltimore, Sih Oka Zeh, shared that BioEYES was the catalyst for following a career path in the sciences:

“I had BioEYES in 7th grade. Before they came I was told we were going to do an experiment with fish and microscopes. I wasn’t interested. But then they showed up with all this equipment I’d never seen before. We got to work with the fish and I was so excited. I was mad at the end of the week when they left. I wanted to do more. I wasn’t interested in science or research until I had BioEYES. They are the reason I went to a magnet science high school, and why I 

May 25, 2016

Washington, D.C.—The STEM Funders Network (SFN) announced last week that the DC STEM Network, a partnership of the Carnegie Academy for Science Education (CASE) and the DC Office of the State Superintendent of  Education, has been selected as one of the 10 STEM Learning Ecosystems to join the STEM Learning Ecosystems Initiative, a national initiative, initially developed in 2015-16 beginning with 27 STEM Learning Ecosystems communities across the United States.

Led by the STEM Funders Network (SFN), the STEM Learning Ecosystems Initiative is built on over a decade of National Academy and related research focused on how to cultivate successful STEM collaborations. The selected

April 18, 2016
 

Do you know how a diamond is formed? Can you name one of the craters of Mercury? Have you ever held a fossilized shark tooth?

For anyone who stopped by the Carnegie booth at the USA Science & Engineering Festival this weekend, the answer to all of those questions would be a resounding “yes!”

More than 40 volunteers from four departments, including scientists, Carnegie Academy for Science Education educators, and administrative staff, welcomed thousands of the estimated 350,000 Festival visitors to our booth with a range of fun, interactive science. Some volunteers even brought their families along to lend a hand!

“Thank you so much to everyone at Carnegie who

No content in this section.

DC Stem Network

The DC STEM Network unites community partners to help inspire and prepare all DC youth to succeed, lead, and innovate in STEM fields and beyond. The Network connects educators, industry experts, community organizations, and colleges to support STEM learning across the city. The Network was formed in October 2014 through a partnership between Carnegie Science’s Carnegie Academy for Science Education and the DC Office of the State Superintendent of Education.  Over 200 community partners have already engaged in the effort to enhance STEM learning opportunities for DC students and teachers within the classroom, outside of the classroom and in the workplace.

This past year, the

Carnegie is renowned for its post-doctoral and graduate student fellowship programs, which operate on each of the Carnegie campuses. Our fellows participate fully in the institution’s vigorous intellectual life, and have complete access to the laboratory instruments and facilities at the institution. The fellowships are extremely competitive, and are prized for their independence and for the resources they afford the fellows. The fellowships vary in duration depending on the research area. Each fellow is key to ehnancing the Carnegie mission and expanding Carnegie's influence of unfettered, imaginative scientific research into the next generations.  For information about opportunities in

Fifty years ago, Americans led the world in math and science, claiming some of the most important inventions and technological breakthroughs of the 20th century.  Today, American 15-year-olds rank 25th in math compared to their peers worldwide.  Math for America strives to reclaim America’s reputation for scientific greatness by recruiting and supporting the very best secondary education math teachers.

Here in Washington DC, the majority of secondary school students are not math proficient.  Only about two thirds of secondary school math teachers are fully certified.Our goals follow:

Recruit candidates with strong math knowledge and teaching aptitude, which enhances the

Together with Dr. Jamie Shuda, Steve Farber created a Science Outreach Program, Project BioEYES, that incorporates life science and laboratory education using zebrafish. The outreach program has two main components: educating teachers through hands-on training and tours of our zebrafish facility, and bringing the zebrafish to K-12th grade classrooms for hands-on experiments. The program teaches students about science literacy, genetics, the experimental process, and the cardiovascular system through the use of live zebrafish.

The mission of BioEYES is to foster an enthusiasm for science education, promote interest for future participation in a biology-related field, and allow all

Peter van Keken studies the thermal and chemical evolution of the Earth. In particularly he looks at the causes and consequences of plate tectonics; element modeling of mantle convection,  and the dynamics of subduction zones--locations where one tectonic plate slides under another. He also studies mantle plumes; the integration of geodynamics with seismology; geochemistry and mineral physics. He uses parallel computing and scientific visualization in this work.

He received his BS and Ph D from the University of Utrecht in The Netherlands. Prior to joining Carnegie he was on the faculty of the University of Michigan.

Peter Driscoll studies the evolution of Earth’s core and magnetic field including magnetic pole reversal. Over the last 20 million or so years, the north and south magnetic poles on Earth have reversed about every 200,000, to 300,000 years and is now long overdue. He also investigates the Earth’s inner core structure; core-mantle coupling; tectonic-volatile cycling; orbital migration—how Earth’s orbit moves—and tidal dissipation—the dissipation of tidal forces between two closely orbiting bodies. He is also interested in planetary interiors, dynamos, upper planetary atmospheres and exoplanets—planets orbiting other stars. He uses large-scale numerical simulations in much of his research

Andrew Newman works in several areas in extragalactic astronomy, including the distribution of dark matter--the mysterious, invisible  matter that makes up most of the universe--on galaxies, the evolution of the structure and dynamics of massive early galaxies including dwarf galaxies, ellipticals and cluster. He uses tools such as gravitational lensing, stellar dynamics, and stellar population synthesis from data gathered from the Magellan, Keck, Palomar, and Hubble telescopes.

Newman received his AB in physics and mathematics from the Washington University in St. Louis, and his MS and Ph D in astrophysics from Caltech. Before becomming a staff astronomer in 2015, he was a

Gwen Rudie studies the chemical and physical properties of very distant, so-called  high-redshift galaxies and their surrounding circumgalactic medium. She is primarily an observational astronomer working on the analysis and interpretation of high-resolution spectroscopy of high-redshift Quasi Stellar Objects and low to medium-resolution near-infrared and optical spectroscopy of high-redshift galaxies. She is interested in understanding the intergalactic medium as a tool for understanding galaxy evolution and the physical properties of very distant galaxies such as the composition of stars and their star formation rates

Rudie received her AB from Dartmouth College and her Ph D