Washington, DC–Renowned astrophysicist and National Medal of Science awardee Vera Rubin passed away in Princeton N.J., the evening of December 25, 2016, at the age of 88. Rubin confirmed the existence of dark matter—the invisible material that makes up more than 90% of the mass of the universe. She...
Explore this Story

Give to Carnegie

You Can Support Scientific Discovery.

Learn More

  • Youtube URL: 

    “Scientists are my best friends,” wildlife photographer Frans Lanting said during a retrospective program at Carnegie’s Washington, DC, headquarters last week.

    He added that without the ability to learn from researchers and generate ideas for new images with them, his work would not hold the same power. “It’s like sculpting,” he said, speaking of these collaborations and conversations.

    Watch This Video

Climate change and recent heat waves have put agricultural crops at risk, which means that understanding how plants respond to elevated temperatures is crucial for protecting our environment and food supply. For many plants, even a small increase in average temperature can profoundly affect their growth and development. New research uncovers the system by which plants regulate their response to heat differently between daytime and nighttime. 

Explore this Story

Even though carbon is one of the most-abundant elements on Earth, it is actually very difficult to determine how much of it exists below the surface in Earth’s interior. Analysis by Carnegie’s Marion Le Voyer and Erik Hauri of crystals containing completely enclosed mantle magma with its original carbon content preserved has doubled the world’s known finds of mantle carbon. 

Explore this Story

Germanium may not be a household name like silicon, its group-mate on the periodic table, but it has great potential for use in next-generation electronics and energy technology. Of particular interest are forms of germanium that can be synthesized in the lab under extreme pressure conditions. However, until now one of the most-promising forms of germanium for practical applications, called ST12, had only been created in tiny sample sizes that were too small to definitively confirm its properties.

Explore this Story

Stay Connected

Sign Up to Receive Carnegie Communications. 

If you are interested in receiving any of our materials, learn more

Baltimore, MD—A first-of-its-kind study on almost 20,000 K-12 underrepresented public school students shows that Project BioEYES, based at Carnegie’s Department of Embryology, is effective at increasing students’ science knowledge and positive attitudes about science. Younger students had the greatest attitude changes. The study covered five years and tested students before and after the one-week BioEYES program.

Explore this Story
Carnegie Academy for Science Education
Scientific literacy is now recognized to be crucial for our nation's progress in the 21st century. The Carnegie Institution, a pre-eminent basic research organization, has fostered the development of scientific knowledge since the early 20th century. For many years, this meant the training of...
Explore this Project
Stem cells make headline news as potential treatments for a variety of diseases. But undertstanding the nuts and bolts of how they develop from an undifferentiated cell  that gives rise to cells that are specialized such as organs, or bones, and the nervous system, is not well understood.  The...
Explore this Project
DC Stem Network
The DC STEM Network unites community partners to help inspire and prepare all DC youth to succeed, lead, and innovate in STEM fields and beyond. The Network connects educators, industry experts, community organizations, and colleges to support STEM learning across the city. The Network was formed...
Explore this Project
Josh Simon uses observations of nearby galaxies to study problems related to dark matter, chemical evolution, star formation, and the process of galaxy evolution. In one area he looks at peculiarly dark galaxies. Interestingly, some galaxies are so dark they glow with the light of just a few...
Meet this Scientist
Anna Michalak joined Carnegie in 2011 from the Department of Civil and Environmental Engineering at the University of Michigan. Her research focuses on characterizing complexity and quantifying uncertainty in environmental systems to improve our understanding of these systems and our ability to...
Meet this Scientist
Anthony Piro is the George Ellery Hale Distinguished Scholar in Theoretical Astrophysics at the Carnegie Observatories. He is a theoretical astrophysicist studying compact objects, astrophysical explosions, accretion flows, and stellar dynamics. His expertise is in nuclear physics, thermodynamics,...
Meet this Scientist

Explore Carnegie Science

January 17, 2017

Washington, D.C.—Global Ecology NSF Fellow Mary Whelan has been honored with Carnegie’s fifth Postdoctoral Innovation and Excellence (PIE) Award. These prizes are made through nominations from the department directors and are chosen by the Office of the President. Whelan was awarded the prize for both her scientific and cultural contributions to the Carnegie community.

Whelan’s work on atmospheric trace gas biogeochemistry shows an enormous breadth of skills, knowledge, and curiosity. She asks both “how do we measure it?” and “what does it tell us about the world?”—two scientific questions that are increasingly “siloed”  in the environmental sciences. She spends hours of

January 13, 2017

Even though carbon is one of the most-abundant elements on Earth, it is actually very difficult to determine how much of it exists below the surface in Earth’s interior. Analysis by Carnegie’s Marion Le Voyer and Erik Hauri of crystals containing completely enclosed mantle magma with its original carbon content preserved has doubled the world’s known finds of mantle carbon. The findings are published in Nature Communications.

Overall, there is a lot about carbon chemistry that takes place below Earth’s crust that scientists still don’t understand. In particular, the amount of carbon in the Earth’s mantle has been the subject of hot debate for decades. This topic is of interest

Carnegie Science, Carnegie Institution for Science, Carnegie Institution
January 3, 2017

Washington, DC—Germanium may not be a household name like silicon, its group-mate on the periodic table, but it has great potential for use in next-generation electronics and energy technology.

Of particular interest are forms of germanium that can be synthesized in the lab under extreme pressure conditions. However, one of the most-promising forms of germanium for practical applications, called ST12, has only been created in tiny sample sizes—too small to definitively confirm its properties.

“Attempts to experimentally or theoretically pin down ST12-germanium’s characteristics produced extremely varied results, especially in terms of its electrical conductivity,” said

December 26, 2016

Washington, DC–Renowned astrophysicist and National Medal of Science awardee Vera Rubin passed away in Princeton N.J., the evening of December 25, 2016, at the age of 88. Rubin confirmed the existence of dark matter—the invisible material that makes up more than 90% of the mass of the universe. She was a retired staff astronomer at the Carnegie Institution’s Department of Terrestrial Magnetism in Washington, D.C.

“Vera Rubin was a national treasure as an accomplished astronomer and a wonderful role model for young scientists,” remarked Carnegie president Matthew Scott. “We are very saddened by this loss.”

In the 1960s, Rubin’s interest in how stars orbit their galactic

No content in this section.

Chris Field is a co-principal investigator of the Jasper Ridge Global Change Experiment at the Jasper Ridge Biological Preserve in northern California. The site, designed to exploit grasslands as models for understanding how ecosystems may respond to climate change, hosts a number of studies of the potential effects from elevated atmospheric carbon dioxide, elevated temperature, increased precipitation, and increased nitrogen deposition. The site houses experimental plots that replicate all possible combinations of the four treatments and additional sampling sites that control for the effects of project infrastructure. Studies focus on several integrated ecosystem responses to the

Carnegie Academy for Science Education

Scientific literacy is now recognized to be crucial for our nation's progress in the 21st century.

The Carnegie Institution, a pre-eminent basic research organization, has fostered the development of scientific knowledge since the early 20th century. For many years, this meant the training of graduate students and postdoctoral fellows in the Institution's laboratories, located in Washington, DC and around the country.

In 1989, Maxine Singer, then president of Carnegie, founded First Light, a Saturday science school for children. This was the start of the Carnegie Academy for Science Education (CASE) whose goal is to encourage interest in science among school children and

Fresh water constitutes less than 1% of the surface water on earth, yet the importance of this simple molecule to all life forms is immeasurable. Water represents the most vital reagent for chemical reactions occurring in a cell. In plants, water provides the structural support necessary for plant growth. It acts as the carrier for nutrients absorbed from the soil and transported to the shoot. It also provides the chemical components necessary to generate sugar and biomass from light and carbon dioxide during photosynthesis. While the importance of water to plants is clear, an understanding as to how plants perceive water is limited. Most studies have focused on environmental conditions

Andrew Steele joins the Rosetta team as a co-investigator working on the COSAC instrument aboard the Philae lander (Fred Goesmann Max Planck Institute - PI). On 12 November 2014 the Philae system will be deployed to land on the comet and begin operations. Before this, several analyses of the comet environment are scheduled from an approximate orbit of 10 km from the comet. The COSAC instrument is a Gas Chromatograph Mass Spectrometer that will measure the abundance of volatile gases and organic carbon compounds in the coma and solid samples of the comet.

Alan Linde is trying to understand the tectonic activity that is associated with earthquakes and volcanos, with the hope of helping predictions methods.  He uses highly sensitive data that measures how the Earth is changing below the surface with devises called borehole strainmeters that measure tiny strains the Earth undergoes.

Strainmeter data has led to the discovery of events referred to as slow earthquakes that are similar to regular earthquakes except that the fault motions take place over much longer time scales. These were first detected in south-east Japan and have since been seen in a number of different environments including the San Andreas Fault in California and in

One way to adapt to climate change is to understand how plants can thrive in the changing environment. José Dinneny looks at the mechanisms that control environmental responses in plants, including responses to salty soils and different moisture conditions—work that provides the foundation for developing crops for the changing climate.

The Dinneny  lab focuses on understanding how developmental processes such as cell-type specification regulate responses to environmental change. Most studies have considered the organ or even the whole organism as a single responsive unit and ignore the potential diversity of responses by the various cell-types composing an organism. Dinneny has

Young investigator Martin Jonikas has broad ambitions: to transform our fundamental understanding of photosynthetic organisms by developing game-changing tools. In the long run, his lab aims to increase photosynthetic efficiency of crops, which could improve food production around the world.

When photosynthesis first evolved, the atmosphere contained much more carbon dioxide and much less oxygen than it does today. As a result, the photosynthetic machinery of many organisms may not be completely optimized for today’s environment.

The protein responsible for fixing carbon dioxide—called Rubisco—worked very well in the Earth’s early atmosphere. As photosynthetic organisms

There is a lot of folklore about left-brain, right-brain differences—the right side of the brain is supposed to be the creative side, while the left is the logical half. But it’s much more complicated than that. Marnie Halpern studies how left-right differences arise in the developing brain and discovers the genes that control this asymmetry.

Using the tiny zebrafish, Danio rerio, Halpern explores how regional specializations occur within the neural tube, the embryonic tissue that develops into the brain and spinal cord. The zebrafish is ideal for these studies because its basic body plan is set within 24 hours of fertilization. By day five, young larvae are able to feed and swim