Dr. Eric Isaacs Begins as 11th President of the Carnegie Institution for Science

Dr. Eric D. Isaacs begins his tenure as the 11th president of the Carnegie Institution on July 2, 2018.  Isaacs joins Carnegie from the University of Chicago where he has been the Robert A. Millikan Distinguished Service Professor, Department of Physics and the James Franck Institute Executive Vice President for Research, Innovation and National Laboratories. 

 

Explore this Story

Give to Carnegie

You Can Support Scientific Discovery.

Learn More

Lab-based mimicry allowed an international team of physicists including Carnegie’s Alexander Goncharov to probe hydrogen under the conditions found in the interiors of giant planets—where experts believe it gets squeezed until it becomes a liquid metal, capable of conducting electricity. To build better models of potential exoplanetary architecture, this transition between gas and metallic liquid hydrogen must be demonstrated and understood. 

Explore this Story

New work from Carnegie’s Ethan Greenblatt and Allan Spradling reveals that the genetic factors underlying fragile X syndrome, and potentially other autism-related disorders, stem from defects in a cell’s ability to create unusually large protein structures. It turns out that a gene called Fmr1 plays a kind of "helper" role, which boosts the production of critically important large proteins in both neurons and egg cells. Their results explain why Frm1's absence is linked to the most-common form of inherited autism, fragile X syndrome, as well as to premature ovarian failure.

Explore this Story

Stay Connected

Sign Up to Receive Carnegie Communications. 

If you are interested in receiving any of our materials, learn more

Observatories NASA Hubble Postdoctoral Fellow Maria Drout will receive the tenth Postdoctoral Innovation and Excellence Award (PIE). She was one of four Carnegie astronomers who, along with colleagues from UC Santa Cruz, provided the first-ever glimpse of two neutron stars colliding last August. She was first author on a Science paper, which measured the changing light from that merger to shed light on the origin of the heaviest elements in the universe.. The discovery was widely covered by the media and opened the door to a new era of astronomy.

Explore this Story
  • New research, led by former Carnegie postdoctoral fellow Summer Praetorius, shows that changes in the heat flow of the northern Pacific Ocean may have a larger effect on the Arctic climate than previously thought. The findings are published in the August 7, 2018, issue of Nature Communications.

    Explore this Story
The High Pressure Collaborative Access Team (HPCAT) was established to advance cutting-edge, multidisciplinary, high-pressure science and technology using synchrotron radiation at the Advanced Photon Source (APS) of Argonne National Laboratory in Illinois. The integrated HPCAT facility has...
Explore this Project
Carnegie scientists participate in NASA's Kepler missions, the first mission capable of finding Earth-size planets around other stars. The centuries-old quest for other worlds like our Earth has been rejuvenated by the intense excitement and popular interest surrounding the discovery of hundreds of...
Explore this Project
The Geophysical Laboratory has made important advances in the growth of diamond by chemical vapor deposition (CVD).  Methods have been developed to produce single-crystal diamond at low pressure having a broad range of properties.
Explore this Project
Special Events
Wednesday, September 5, 2018 - 6:45pm to 7:45pm

HPV is the leading cause of cervical cancer and kills more than 250,000 women around the world each year. The HPV vaccine, available thanks to the efforts of Drs. John Schiller and Douglas Lowy,...

Explore this Event
Capital Science Evening Lectures
Tuesday, September 18, 2018 - 6:30pm to 7:45pm

In August 2017, a team of four Carnegie astronomers provided humankind’s first-ever glimpse of two neutron stars colliding—opening the door to a new era of astronomy. Along with colleagues at UC...

Explore this Event
Capital Science Evening Lectures
Wednesday, October 3, 2018 - 6:30pm to 7:45pm

Adult brain connections are precise, but such precision emerges during critical developmental periods when synapses—the delicate contacts between neurons that relay and store information—are...

Explore this Event
Josh Simon uses observations of nearby galaxies to study problems related to dark matter, chemical evolution, star formation, and the process of galaxy evolution. In one area he looks at peculiarly dark galaxies. Interestingly, some galaxies are so dark they glow with the light of just a few...
Meet this Scientist
Seismic waves flow through Earth’s solid and liquid material differently, allowing Earth scientists to determine various aspects of the composition of the Earth’s interior. Broadband seismology looks at a broad spectrum of waves for high-resolution imaging. Lara Wagner collects this data from...
Meet this Scientist
Experimental petrologist Michael Walter became director of the Geophysical Laboratory beginning April 1, 2018. His recent research has focused on the period early in Earth’s history, shortly after the planet accreted from the cloud of gas and dust surrounding our young Sun, when the mantle and the...
Meet this Scientist

Explore Carnegie Science

Smokestacks photo from the public domain
August 16, 2018

Washington, DC— When it comes to aerosol pollution, as the old real estate adage says, location is everything.

Aerosols are tiny particles that are spewed into the atmosphere by human activities, including burning coal and wood. They have negative effects on air quality—damaging human health and agricultural productivity.

While greenhouse gases cause warming by trapping heat in the atmosphere, some aerosols can have a cooling effect on the climate—similar to how emissions from a major volcanic eruption can cause global temperatures to drop.  This occurs because the aerosol particles cause more of the Sun’s light to be reflected away from the planet. Estimates indicate that

Unraveling the properties of fluid metallic hydrogen could help scientists unlock the mysteries of Jupiter’s formation and internal structure. Credit: Mark Meamber, LLNL.
August 15, 2018

Washington, DC—Lab-based mimicry allowed an international team of physicists including Carnegie’s Alexander Goncharov to probe hydrogen under the conditions found in the interiors of giant planets—where experts believe it gets squeezed until it becomes a liquid metal, capable of conducting electricity. Their work is published in Science.

Hydrogen is the most-abundant element in the universe and the simplest—comprised of only a one proton and one electron in each atom. But that simplicity is deceptive, because there is still so much to learn about it, including its behavior under conditions not found on Earth.

For example, although hydrogen on the surface of giant planets,

This image shows an example of defects in the development of the embryonic central nervous system in stored eggs that lacked the Fmr1 gene.
August 15, 2018

Baltimore, MD—New work from Carnegie’s Ethan Greenblatt and Allan Spradling reveals that the genetic factors underlying fragile X syndrome, and potentially other autism-related disorders, stem from defects in the cell’s ability to create unusually large protein structures. Their findings are published in Science.

Their research focuses on a gene called Fmr1. Mutations in this gene create problems in the brain as well as the reproductive system. They can lead to the most-common form of inherited autism, fragile X syndrome, as well as to premature ovarian failure.

It was already thought that Fmr1 plays a pivotal part in the last stages of the process by which the recipe

Burke adjusting recording instruments at a Carnegie radio receiver truck. Photo: DTM Archives, via the Baltimore Sun.
August 10, 2018

Bernard Burke, distinguished MIT astrophysicist and former staff scientist at Carnegie's Department of Terrestrial Magnetism, died August 5. He was 90. 

Burke, who joined the department's in 1953, was an integral member of its astronomy group until he left to be professor of physics at MIT in 1965, where his work shifted to, among other things, the detection of gravitational lensing. He also played a key role in the development of Very Long Baseline Interferometry (VLBI), which enables high-resolution imaging of cosmic structures. He was elected to the National Academy of Sciences in 1970 and served as president of the American Astronomical Society from 1986 to 1988. He was an

September 5, 2018

HPV is the leading cause of cervical cancer and kills more than 250,000 women around the world each year. The HPV vaccine, available thanks to the efforts of Drs. John Schiller and Douglas Lowy, can now prevent the devastating disease. What does it take to create this type of breakthrough in science? And how can we ensure that the scientists who are working on today’s biggest challenges have the resources they need to change the world?

For this joint program between Carnegie Science and the National Science and Technology Medals Foundation, Dr. Schiller, a 2012 National Medal recipient, will speak about the development of the HPV vaccine. Following his presentation Dr. Schiller

September 18, 2018

In August 2017, a team of four Carnegie astronomers provided humankind’s first-ever glimpse of two neutron stars colliding—opening the door to a new era of astronomy. Along with colleagues at UC Santa Cruz, Carnegie’s Anthony Piro, Josh Simon, Maria Drout, and Ben Shappee used the Swope Telescope at our Las Campanas Observatory to discover the light produced by the explosion, pinpointing the origin of a gravitational wave signal less than 11 hours after it was detected by the LIGO Collaboration. They followed the radioactive glow of the debris over the next few weeks, unlocking the secret of how some of the world’s most-valuable elements, such as gold and platinum, are created. Drs.

October 3, 2018

Adult brain connections are precise, but such precision emerges during critical developmental periods when synapses—the delicate contacts between neurons that relay and store information—are either pruned or grow as part of a learning driven process. Understanding the molecules and mechanisms of this synapse pruning may lead to treatments for developmental disorders and Alzheimer’s disease.

Dr. Carla Shatz: Sapp Family Provostial Professor & Professor of Biology and Neurobiology, Stanford University; David Starr Jordan Director, Stanford Bio-X James H. Clark Center; Kavli Prize Laureate

The conversation will be moderated by George Washington University School of Media

October 17, 2018

Why create national parks? Although the process of designating new parkland is lengthy and complex, national parks offer ecological, cultural, and economic benefits, while also guaranteeing longterm conservation of fragile ecosystems. Founded by Kristine McDivitt Tompkins and her latehusband, Douglas, Tompkins Conservation and its partners have protected approximately 13 million acres of parkland in Chile and Argentina. Mrs. Tompkins will answer the question of why national parks are a worthwhile investment by drawing on her years as the CEO of Patagonia, Inc., in addition to her more than two decades leading initiatives to rewild and restore biodiversity in South America.

Anna Michalak’s team combined sampling and satellite-based observations of Lake Erie with computer simulations and determined that the 2011 record-breaking algal bloom in the lake was triggered by long-term agricultural practices coupled with extreme precipitation, followed by weak lake circulation and warm temperatures. The bloom began in the western region in mid-July and covered an area of 230 square miles (600 km2). At its peak in October, the bloom had expanded to over 1930 square miles (5000 km2). Its peak intensity was over 3 times greater than any other bloom on record. The scientists predicted that, unless agricultural policies change, the lake will continue to experience

The Anglo-Australian Planet Search (AAPS) is a long-term program being carried out on the 3.9-meter Anglo-Australian Telescope (AAT) to search for giant planets around more than 240 nearby Sun-like stars. The team, including Carnegie scientists,  uses the "Doppler wobble" technique to search for these otherwise invisible extra-solar planets, and achieve the highest long-term precision demonstrated by any Southern Hemisphere planet search.

Superdeep diamonds are  tiny time capsules carrying unchanged impurities made eons ago and providing researchers with important clues about Earth’s formation.  Diamonds derived from below the continental lithosphere, are most likely from the transition zone (415 miles, or 670km deep) or the top of the lower mantle. Understanding diamond origins and compositions of the high-pressure mineral phases has potential to revolutionize our understanding of deep mantle circulation.

The Carnegie Irvine Galaxy Survey is obtaining high-quality optical and near-infrared images of several hundred of the brightest galaxies in the southern hemisphere sky, at Carnegie’s Las Campanas Observatory to investigate the structural properties of galaxies. For more see    http://cgs.obs.carnegiescience.edu/CGS/Home.html

Some 40 thousand tons of extraterrestrial material fall on Earth every year. This cosmic debris provides cosmochemist Conel Alexander with information about the formation of the Solar System, our galaxy, and perhaps the origin of life.

Alexander studies meteorites to determine what went on before and during the formation of our Solar System. Meteorites are fragments of asteroids—small bodies that originated between Mars and Jupiter—and are likely the last remnants of objects that gave rise to the terrestrial planets. He is particularly interested in the analysis of chondrules, millimeter-size spherical objects that are the dominant constituent of the most primitive types of

Volcanologist Diana Roman is interested in the mechanics of how magma moves through the Earth’s crust, and in the structure, evolution, and dynamics of volcanic conduit systems. Her ultimate goal is to understand the likelihood and timing of volcanic eruptions.

Most of Roman’s research focuses on understanding changes in seismicity and stress in response to the migration of magma through volcanic conduits, and on developing techniques and strategies for monitoring active or restless volcanoes through the analysis of high-frequency volcanic seismicity.

Roman is also interested in understanding the seismicity at quiet volcanoes, tectonic and hidden volcanic microearthquake

Leopoldo Infante became the director of the Las Campanas Observatory on July 31, 2017.

Since 2009, Infante has been the founder and director of the Centre for Astro-Engineering at the Chilean university. He joined PUC as an assistant professor in 1990 and has been a full professor since 2006. He was one of the creators of PUC’s Department of Astronomy and Astrophysics, and served as its director from 2000 to 2006. He also established the Chilean Astronomical Society (SOCHIAS) and served as its president from 2009 to 2010.

Infante received his B.Sc. in physics at PUC. He then acquired a MSc. and Ph.D. in physics and astronomy from the University of Victoria in Canada.

Alycia Weinberger wants to understand how planets form, so she observes young stars in our galaxy and their disks, from which planets are born. She also looks for and studies planetary systems.

Studying disks surrounding nearby stars help us determine the necessary conditions for planet formation. Young disks contain the raw materials for building planets and the ultimate architecture of planetary systems depends on how these raw materials are distributed, what the balance of different elements and ices is within the gas and dust, and how fast the disks dissipate.

Weinberger uses a variety of observational techniques and facilities, particularly ultra-high spatial-