Dr. Eric Isaacs Begins as 11th President of the Carnegie Institution for Science

Dr. Eric D. Isaacs begins his tenure as the 11th president of the Carnegie Institution on July 2, 2018.  Isaacs joins Carnegie from the University of Chicago where he has been the Robert A. Millikan Distinguished Service Professor, Department of Physics and the James Franck Institute Executive Vice President for Research, Innovation and National Laboratories. 

 

Explore this Story

Give to Carnegie

You Can Support Scientific Discovery.

Learn More

  • How much of a reef’s ability to withstand stressful conditions is influenced by the type of symbiotic algae that its corals hosts? New work from a team including Carnegie's Arthur Grossman investigates how the the abundance and diversity of nutrients that algae share with their coral  hosts varies between species and what this could mean for coral’s ability to survive in a changing climate.  The research team determined that in the wake of a bleaching event, even an algal tenant that’s poor provider may be better than no provider.

    Explore this Story
  • Youtube URL: 

    Earthquakes, floods, tsunamis, hurricanes, and volcanoes—they all stem from the very same forces that give our planet life. It is only when these forces exceed our ability to withstand them that they become disasters. Science and engineering can be used to understand extreme events and to design our cities to be resilient, but we must overcome the psychological drive to normalization that keeps humanity from believing that we could experience anything worse than what we have already survived.

    Watch This Video

The interactions that take place between the species of microbes living in the gastrointestinal system often have large and unpredicted effects on health, according to new work led by Carnegie’s Will Ludington, who assembled a team of biologists, physicists, and mathematicians to comprehensively reveal the gut microbiome ecosystem of fruit flies. 

Explore this Story

A supernova discovered by an international group of astronomers including Carnegie’s Tom Holoien and Maria Drout, and Carnegie alumnus Ben Shappee of the University of Hawaii, provides an unprecedented look at the first moments of a violent stellar explosion. The light from the explosion's first hours showed an unexpected pattern, which Carnegie's Anthony Piro analyzed to reveal that the genesis of these phenomena is even more mysterious than previously thought.

Explore this Story

Carnegie’s Anna Michalak was a major contributor to the U.S. Global Change Research Program’s Second State of the Carbon Cycle Report released last Friday, which provides a current state-of-the-science assessment of the carbon cycle in North America—including the United States, Canada, and Mexico—and  its connection to climate and society.

Explore this Story

Stay Connected

Sign Up to Receive Carnegie Communications. 

If you are interested in receiving any of our materials, learn more

An international team including five Carnegie astronomers has discovered a frozen Super-Earth orbiting Barnard’s star, the closest single star to our own Sun. The Planet Finder Spectrograph on Carnegie’s Magellan II telescope was integral to the discovery, which is published in Nature. To find this cold Super-Earth, the team combined 20 years of data from seven different instruments, all of which were “stitched” together to form one of the largest and most-extensive datasets ever used for this method of planet detection.

Explore this Story
  • Almost half of our DNA is made up of jumping genes, moving around the genome in developing sperm and egg cells. Given their ability to jump around the genome, their invasion can trigger DNA damage and mutations often leading to animal sterility or even death and threatening species survival. Organisms have survived these invasions, but little is known about where this adaptability comes from. Now, Carnegie researchers have discovered that reproductive stem cells boost production of non-coding RNA elements that suppress jumping gene activity and activate a DNA repair process allowing for normal egg development. 

     

    Explore this Story
The Earthbound Planet Search Program has discovered hundreds of planets orbiting nearby stars using telescopes at Lick Observatory, Keck Observatory, the Anglo-Australian Observatory, Carnegie's Las Campanas Observatory, and the ESO Paranal Observatory.  Our multi-national team has been...
Explore this Project
The Zheng lab studies cell division including the study of stem cells, genome organization, and lineage specification. They study the mechanism of genome organization in development, homeostasis—metabolic balance-- and aging; and the influence of cell morphogenesis, or cell shape and...
Explore this Project
The recent discovery that the universe is expanding at an accelerating rate has profoundly affected physics. If the universe were gravity-dominated then it should be decelerating. These contrary results suggest a new form of “dark energy”—some kind of repulsive force—is...
Explore this Project
Special Events
Tuesday, December 11, 2018 - 6:30pm to 7:45pm

HABITABILITY: WHAT EARTH AND THE INNER PLANETS CAN TEACH US ABOUT THE SEARCH FOR LIFE ON ROCKY EXOPLANETS
What enabled life to form on Earth—and what kept it at bay on...

Explore this Event
Seismic waves flow through Earth’s solid and liquid material differently, allowing Earth scientists to determine various aspects of the composition of the Earth’s interior. Broadband seismology looks at a broad spectrum of waves for high-resolution imaging. Lara Wagner collects this...
Meet this Scientist
Scientists simulate the high pressures and temperatures of planetary interiors to measure their physical properties. Yingwei Fei studies the composition and structure of planetary interiors with high-pressure instrumentation including the multianvil apparatus, the piston cylinder, and the diamond...
Meet this Scientist
Guillermo Blanc wants to understand the processes by which galaxies form and evolve over the course of the history of the universe. He studies local galaxies in the “present day” universe as well as very distant and therefore older galaxies to observe the early epochs of galaxy...
Meet this Scientist

Explore Carnegie Science

A bright field image of the anemone Aiptasia populated with its symbiotic algae.
December 6, 2018

Stanford, CA—How much of the ability of a coral reef to withstand stressful conditions is influenced by the type of algae that the corals hosts?

Corals are marine invertebrates from the phylum called cnidarians that build large exoskeletons from which colorful reefs are constructed. But this reef-building is only possible because of a mutually beneficial relationship between the coral and various species of single-celled algae called dinoflagellates that live inside the cells of coral polyps.

The algae are photosynthetic—meaning capable of converting the Sun’s energy into chemical energy for food, just like plants. And the exchange of nutrients between the

Super-resolution image of fly gut crypts colonized by the native Lactobacillus (red) and Acetobacter (green) bacteria. Fly cell nuclei appear blue. Image is courtesy of Benjamin Obadia.
December 4, 2018

Baltimore, MD—The interactions that take place between the species of microbes living in the gastrointestinal system often have large and unpredicted effects on health, according to new work from a team led by Carnegie’s Will Ludington. Their findings are published this week in Proceedings of the National Academy of Sciences.

The gut microbiome is an ecosystem of hundreds to thousands of microbial species living within the human body.  The sheer diversity within the human gut presents a challenge to cataloging and understanding the effect these communities have on our health.

Biologists are particularly interested in determining whether or not the

Pan-STARRS image showing the host galaxy of the newly discovered supernova ASASSN-18bt
November 29, 2018

Pasadena, CA—A supernova discovered by an international group of astronomers including Carnegie’s Tom Holoien and Maria Drout, and led by University of Hawaii’s Ben Shappee, provides an unprecedented look at the first moments of a violent stellar explosion. The light from the explosion's first hours showed an unexpected pattern, which Carnegie's Anthony Piro analyzed to reveal that the genesis of these phenomena is even more mysterious than previously thought.

Their findings are published in a trio of papers in The Astrophysical Journal and The Astrophysical Journal Letters. (You can read them here, here, and here.)

Type Ia supernovae are

SOCCR2 cover art
November 27, 2018

Washington, DC—Carnegie’s Anna Michalak was a major contributor to the U.S. Global Change Research Program’s Second State of the Carbon Cycle Report released last Friday, which provides a current state-of-the-science assessment of the carbon cycle in North America—including the United States, Canada, and Mexico—and  its connection to climate and society.

Over the past decade, fossil fuel emissions continued to be by far the largest North American carbon source. Urban areas in North America are the primary source of anthropogenic carbon emissions.

But land ecosystems and the ocean play a major role in removing and sequestering carbon

December 11, 2018

HABITABILITY: WHAT EARTH AND THE INNER PLANETS CAN TEACH US ABOUT THE SEARCH FOR LIFE ON ROCKY EXOPLANETS
What enabled life to form on Earth—and what kept it at bay on Mars and Venus? Does habitability demand factors like plate tectonics and magnetic fields? Will astronomers be able to detect hints of these processes on other worlds? UC Davis Earth planetary scientist and recently named MacArthur Fellow, Dr. Sarah Stewart, will give a short overview of the topic, and then join a panel of planet formation experts for a moderated discussion of the preconditions that make life possible—and the chances of finding it elsewhere.

Dr. Sarah Stewart: University of

The WGESP was charged with acting as a focal point for research on extrasolar planets and organizing IAU activities in the field, including reviewing techniques and maintaining a list of identified planets. The WGESP developed a Working List of extrasolar planet candidates, subject to revision. In most cases, the orbital inclination of these objects is not yet determined, which is why most should still be considered candidate planets. The WGESP ended its six years of existence in August 2006, with the decision of the IAU to create a new commission dedicated to extrasolar planets as a part of Division III of the IAU. The founding president of Commission 53 is Michael Mayor, in honor of

The Carnegie Irvine Galaxy Survey is obtaining high-quality optical and near-infrared images of several hundred of the brightest galaxies in the southern hemisphere sky, at Carnegie’s Las Campanas Observatory to investigate the structural properties of galaxies. For more see    http://cgs.obs.carnegiescience.edu/CGS/Home.html

In March 2014, a technical support unit (TSU) of ten, headquartered at Global Ecology, had successfully completed a herculean management effort for the 2000-page assessment Climate Change 2014: Impacts, Adaptation, and Vulnerability, including two summaries. They were issued by the United Nations (UN) Intergovernmental Panel on Climate Change (IPCC), Working Group II co-chaired by Chris Field, Global Ecology director, with science co-directors Katie Mach and Mike Mastrandrea managing the input of over 190 governments and nearly 2,000 experts from around the world.

The IPCC, established in 1988, assesses information about climate change and its impacts. In September 2008, Field was

The Gall laboratory studies all aspects of the cell nucleus, particularly the structure of chromosomes, the transcription and processing of RNA, and the role of bodies inside the cell nucleus, especially the Cajal body (CB) and the histone locus body (HLB).

Much of the work makes use of the giant oocyte of amphibians and the equally giant nucleus or germinal vesicle (GV) found in it. He is particularly  interested in how the structure of the nucleus is related to the synthesis and processing of RNA—specifically, what changes occur in the chromosomes and other nuclear components when RNA is synthesized, processed, and transported to the cytoplasm.

It’s common knowledge that light is essential for plants to perform photosynthesis—converting light energy into chemical energy by transforming carbon dioxide and water into sugars for fuel. Plants maximize the process by bending toward the light in a process called phototropism, which is particularly important for germinated seedlings to maximize light capture for growth. Winslow Briggs has been a worldwide leader in unraveling the molecular mechanisms behind this essential plant process.

Over a decade ago Briggs and colleagues discovered and first characterized the photoreceptor family that mediates this directional response and named the two members phototropin 1

Andrew Steele uses traditional and biotechnological approaches for the detection of microbial life in the field of astrobiology and Solar System exploration. Astrobiology is the search for the origin and distribution of life in the universe. A microbiologist by training, his principle interest is in developing protocols, instrumentation, and procedures for life detection in samples from the early Earth and elsewhere in the Solar System.

Steele has developed several instrument and mission concepts for future Mars missions and became involved in the 2011 Mars Science Laboratory mission as a member of the Sample Analysis at Mars (SAM) team. For  a number of years he journeyed to

With the proliferation of discoveries of planets orbiting other stars, the race is on to find habitable worlds akin to the Earth. At present, however, extrasolar planets less massive than Saturn cannot be reliably detected. Astrophysicist John Chambers models the dynamics of these newly found giant planetary systems to understand their formation history and to determine the best way to predict the existence and frequency of smaller Earth-like worlds.

As part of this research, Chambers explores the basic physical, chemical, and dynamical aspects that led to the formation of our own Solar System--an event that is still poorly understood. His ultimate goal is to determine if similar

The first step in gene expression is the formation of an RNA copy of its DNA. This step, called transcription, takes place in the cell nucleus. Transcription requires an enzyme called RNA polymerase to catalyze the synthesis of the RNA from the DNA template. This, in addition to other processing factors, is needed before messenger RNA (mRNA) can be exported to the cytoplasm, the area surrounding the nucleus.

Although the biochemical details of transcription and RNA processing are known, relatively little is understood about their cellular organization. Joseph G. Gall has been an intellectual leader and has made seminal breakthroughs in our understanding of chromosomes, nuclei and