The President’s Report

July 1, 2009 - June 30, 2010

Carnegie Institution for Science
The Carnegie Institution was incorporated with these words in 1902 by its founder, Andrew Carnegie. Since then, the institution has remained true to its mission. At six research departments across the country, the scientific staff and a constantly changing roster of students, postdoctoral fellows, and visiting investigators tackle fundamental questions on the frontiers of biology, earth sciences, and astronomy.
Carnegie Institution

Trustees
Michael E. Gellert, Chairman
Suzanne Nora Johnson, Vice Chairman
Deborah Rose, Secretary
Euan Baird, Senior Trustee
Remi Barbier
Samuel W. Bodman
John C. Botts
Michael Brin
William T. Coleman, Jr., Senior Trustee
Tom Cori
John F. Crawford
Edward E. David, Jr., Emeritus
Michael A. Duffy, Senior Trustee
W. Gary Ernst
Sandra M. Faber
Bruce W. Ferguson
Stephen P. A. Fodor
William K. Gayden
Robert G. Goelet
William R. Hearst III
Rush Holt
Kazuo Inamori, Emeritus
Mary-Claire King
Gerald D. Laubach, Emeritus
John D. Macomber, Senior Trustee
Steven L. McKnight, Senior Trustee
Burton J. McMurtry, Emeritus
Jaylee Mead, Senior Trustee
Frank Press, Emeritus
William J. Rutter, Senior Trustee
Maxine F. Singer
Christopher T. S. Stone
David F. Swensen, Senior Trustee
Charles H. Townes, Emeritus
William I. M. Turner, Jr.
Thomas N. Urban, Senior Trustee
Mary Lou Zoback

President
Richard A. Meserve

Directors
Allan C. Spradling, Department of Embryology
Russell J. Hemley, Geophysical Laboratory
Christopher Field, Department of Global Ecology
Wendy L. Freedman, The Crawford H. Greenewalt Chair, The Observatories
Wolf B. Frommer, Department of Plant Biology
Sean C. Solomon, Department of Terrestrial Magnetism
G. Gary Kowalczyk, Administration and Finance
Gotthard Szághi-Szabó, Chief Information Officer
Contents

The President’s Commentary  6
Friends, Honors & Transitions  14
Research Highlights  24
Financial Profile  52
Personnel  59
Bibliography  77
The President’s Commentary

Aspirations for the Future
At the November 2010 meeting of our board of trustees, we heard from the institution’s directors about their scientific aspirations for the Carnegie departments. This exhilarating meeting revealed the potential for paradigm-shifting discoveries in several scientific disciplines, albeit with significant challenges that must be overcome if we are to realize them. I share some of these discussions here, borrowing liberally from the presentations of the Carnegie directors.

In astronomy, we reviewed the findings of a new report by the National Research Council to identify a program that will “set the astronomy and astrophysics community firmly on the path to answering profound questions about the cosmos.”¹ Panels were established covering five scientific frontiers, resulting in the definition of 20 key scientific questions that should be pursued over the next decade. Carnegie scientists, in reviewing the report, noted that the Giant Magellan Telescope (GMT) project, which Carnegie is spearheading with institutions of higher education in the United States and entities in Australia and Korea, addresses fully 18 of the 20 key scientific questions and 4 of the 5 frontier areas. The GMT telescope, which has now completed its design phase, is a telescope with a primary mirror, made of segments, with an aperture of 25 meters—far larger than any telescope now in existence. It will have the capability to study distant objects with unprecedented resolution. It promises to have a major impact in key areas such as understanding the connections between dark and luminous matter, tracking the baryon cycle in galaxies and the intergalactic medium, and identifying the first objects to light up the universe. The GMT, which will be equipped with adaptive optics to compensate for the disruptive effects of the Earth’s atmosphere, will also have the capability to identify and determine the properties of nearby planets outside our own Solar System.

With these big opportunities in astronomy come some big challenges. There are technical hurdles to overcome in constructing a telescope of unprecedented size and capabilities, difficulty in raising capital in a time of constrained private and public resources, and the need to forge an international partnership that harnesses the capacities of several countries and institutions. I am pleased that Carnegie and our partners are facing these challenges directly, and we are optimistic that we will meet and overcome them in the coming decade.

Carnegie's Department of Embryology seeks to develop a greater understanding of the fundamental mechanisms governing the development of living organisms. Its scientists expect, along the way, to find that some of the fundamental assumptions about the genome are incomplete. For example, they expect we will find that there are novel biological mechanisms using parts of the genome whose significance is not currently understood (only about 2% of the human genome constitutes genes). They seek to identify new ways in which the genomes of somatic cells systematically acquire differences during development from each other and from germ line cells. They seek to expand our understanding of the operation of stem cells. And they seek to discover new mechanisms for the regulation of genome replication, new means for information storage and retrieval in the neural system, and new mechanisms involved in cancer and evolution.

In addition to these revolutionary tasks, Carnegie scientists will continue to carry out more predictable research. They seek to understand the structure at single-cell resolution of all tissues (including the nervous system) of the model organisms (e.g., mice, fruit flies, zebrafish) that are the focus of the department’s research. They seek to understand intercellular communication within tissues. They seek to develop new means to understand physiological cellular activities and metabolism. And finally, they seek to document the underlying unity of these various processes between species, as well as exceptions, in order to understand how the biological world evolved from a common Precambrian ancestor.
Realizing these dreams will require new equipment for sequencing, microscopy, and biochemistry, along with some renovation and expansion of the department’s animal facilities. This is a time of extraordinary advance in biology and the department is at the forefront.

The quest of the Department of Plant Biology is to unlock the mysteries of plant life, organisms that constitute the foundation for all life on Earth. They use advanced technologies in biology to address a myriad of mysteries: How sunlight is absorbed and used by plants to produce biomass, how inorganic nutrients are captured and converted into organic matter using the energy from light, how single cells and the plant body are formed, how the environment shapes plant growth and development and, in turn, how plants interact with and shape the environment. Our researchers seek to extend our knowledge of the fundamental biological mechanisms critical for plant growth and development through basic research, a hallmark of all Carnegie science. In addition, the department’s scientists are pursuing several overarching research initiatives. They explore how plants evolved on Earth, focusing on the emergence of novel plant-specific features. And they are studying the “hidden” half of plants—namely, the underground root system—and its interaction with the environment. Finally, they seek to harness sophisticated bioinformatics tools to develop a deeper understanding of the genes that regulate critical plant functions. The opportunities are tremendous, yet, to achieve their goals, we must raise funds to renovate research facilities and to enhance technological infrastructure in the areas of advanced imaging and bioinformatics.
The Department of Global Ecology, founded in 2002, has already established itself as one of the leading enterprises pursuing integrated Earth-system science. Its aim is to answer fundamental questions about major components of the Earth’s system, including such complex issues as the consequences of changes in the atmospheric concentration of greenhouse gases. It thereby seeks to establish the scientific foundations for a sustainable future for the planet. Some of the recent contributions of the department’s scientists include a study of the impacts of recent global warming on agricultural yields, measurement by sophisticated remote-sensing techniques of the scale of global forest degradation, assessment of the impacts of ocean acidification, study of the impacts of various techniques to counteract some of the effects of growing greenhouse gas accumulation (termed geoengineering), and a study of the climate feedbacks resulting from changes in forests. The overall goal of this research is to understand the forces that shape the behavior of the Earth’s systems. Our challenge is to build a department that has resources that are commensurate with the scope of the problems it is tackling.

One remarkable tool developed at Global Ecology is the Carnegie Airborne Observatory. This system, which is mounted on an aircraft, enables rapid broad-scale ecological assessments of the surveyed terrain. It combines a laser-ranging instrument that enables the measurement of canopy structure, along with a spectroscopic instrument that enables the remote identification of plant species. This tool could provide a critical and unique capability to understand the changing conditions in, for example, tropical forests.
The scientists at the Geophysical Laboratory have shown repeatedly that breakthroughs in our understanding of materials and of geophysics arise when we explore the behavior of materials under extreme conditions, such as extremes of temperature or pressure. They seek to explore fundamental questions: What new physics will appear when atoms are brought and kept extremely close together? What are the extremes of chemistry—i.e., reactivity, inertness, bonding, strength, and kinetics? How far can we extend the limits of material behavior and make new materials for efficient yet benign energy generation, conversion, and transfer? How can we understand the formation and evolution of Earth, super-Earths, and other celestial bodies in terms of the full range of their extreme environments? What is the fate of elements such as carbon deep within planets? What are the extreme limits of biology? What roles do extreme environments play in the origin and evolution of life? How do they enlighten our search for life beyond Earth’s surface?

The Geophysical Laboratory pursues its research through a growing network of relationships, laboratories, and field sites. It has successful programs at Argonne National Laboratory, Brookhaven National Laboratory, and most recently, Oak Ridge National Laboratory, for the conduct of research using unique tools at these laboratories that were developed in partnership with Carnegie scientists. It seeks to expand these relationships and establish new ones in a network of observatories as it strengthens the instrumentation base and capabilities at our facilities on Broad Branch Road.

The Department of Terrestrial Magnetism pursues a broad sweep of questions that address the formation and evolution of planets, including our own. Scientists in that department are grouped in three broad areas—astronomy, geochemistry and cosmochemistry, and geophysics. Within these groups, fundamental theoretical and obser-
vational questions abound, such as the theory of formation of gas-giant, ice-giant, and rocky planets; the chemistry and chronology of early Solar System material, including meteorites, interplanetary dust particles, and samples from cometary and planetary bodies; and those aspects of Earth structure relating to the formation and evolution of continents. Challenges for that department include the need for additional fellows, equipment, computational resources, and skilled technical support.

As the foregoing shows, the scientific dreams of our staff are varied and exciting. It nonetheless is important to note that we do not aim to script our future projects in ways that constrain us. During our discussion, Allan Spradling, the director of the Department of Embryology, provided a view that I share: “[Our] departments do not exist to solve specific [scientific] problems . . . . Instead, they strive to do the most important work in their field at a particular moment in time, work that will maximally advance the field’s internal development. Unfortunately, it is usually not clear what that work is until it is almost completed. . . . [T]he flexible Carnegie style has allowed small departments to have an outsized influence, and arguably has been the secret of the institution’s success over most of its history.” While constantly setting ambitious scientific targets, we seek to maintain the flexibility to pursue the unexpected. Indeed, it is the startling moment of clarity arising from a surprising result that often yields the greatest scientific advance.

Of course, the achievement of the ambitious dreams of our scientists requires resources. Our endowment is recovering from the economic decline of 2008, but not sufficiently as yet to enable significant new spending. We have fared well in support from the federal government and from foundations—a testament to the skills of our scientists—

Scientists at the Geophysical Laboratory (GL) found for the first time that high pressure can be used to make a unique hydrogen-storage material (left). They found that the normally unreactive, noble gas xenon combines with molecular hydrogen ($H_2$) under pressure to form a previously unknown solid with unusual bonding chemistry. The discovery debuts a new family of materials. Other GL researchers were able to watch nanoparticles grow from the earliest stages of their formation (right). Nanoparticles are the foundation of nanotechnology and their performance depends on their structure, composition, and size. Researchers will now be able to develop ways to control the conditions under which they are grown.
Terrestrial Magnetism’s Paul Butler and team find planets around other stars. Their ultimate goal is to find other Earths. This artist’s rendition shows the potentially habitable Earth-sized planet his team recently found. It is one of two new planets discovered around the star Gliese 581, some 20 light-years away. Image courtesy NASA, artwork by Lynette Cook

but we should not expect handsome future growth from these sources. We are clearly entering a period of fiscal stringency at all levels of government. And foundations are recovering from the same endowment declines suffered by Carnegie and most universities, so prudence in their future commitment of resources seems probable.

Nonetheless, I am optimistic that the expansion of our scientific reach will be achieved. I observe the remarkable success of Carnegie science, as revealed by the steady flow of remarkable discoveries from all our departments. (One measure of this success is the extensive listing of scientific publications in major journals that is set out elsewhere in this volume.) Despite our small size, we are very significant contributors in the fields in which we work. Given the important role of science in building a sustainable and productive future, I am confident that the necessary resources will be found.

Andrew Carnegie founded the institution with the intention that it shall “in the broadest and most liberal manner, encourage investigation, research, and discovery.” We are filling the role that Andrew Carnegie intended for us. We will continue to enrich the storehouse of scientific knowledge on into the future, as we have in the past. As the conversation with Carnegie directors has revealed, we do not lack exciting new scientific terrain to explore.

Richard A. Meserve
Friends, Honors & Transitions
Carnegie Friends

Annual Giving

The Barbara McClintock Society

An icon of Carnegie science, Barbara McClintock was a Carnegie plant biologist from 1943 until her retirement. She was a giant in the field of maize genetics and received the 1983 Nobel Prize in Physiology/Medicine for her work on patterns of genetic inheritance. She was the first woman to win an unshared Nobel Prize in this category. To sustain researchers like McClintock, annual contributions to the Carnegie Institution are essential. The McClintock Society thus recognizes generous individuals who contribute $10,000 or more in a fiscal year, making it possible to pursue the highly original research for which Carnegie is known.

$1,000,000 or more
Deborah Rose, Ph.D.

$100,000 to $999,999
William and Cynthia Gayden
Michael and Mary Gellert
Robert G. and Alexandra C. Goelet
William R. Hearst III

$10,000 to $99,999
Anonymous (3)
Didier and Brigitte Berthelemot
Samuel and Diane Bodman
Gary P. and Suzann A. Brinson
Bruce Ferguson and Heather Sandiford
Sibyl R. Golden
Donald E. Graham
Robert and Margaret Hazen
Burton and Deedee McMurtry
Richard A. and Martha R. Meserve
Al and Honey Nashman
Maxine and Daniel Singer
William and Nancy Turner
Sidney J. Weinberg, Jr. *
**Other Annual Giving**

**Individuals**

**$1,000 to $9,999**
Lloyd and Emilie Allen  
Paul A. Armond  
Henry H. Arnhold  
Mary B. Bailey  
Charles Bestor  
Peter Brennan  
Donald and Linda Brown  
Anthony Cavalieri and Ellen Look  
Eleanora K. Dalton  
Igor Dawid and Keiko Ozato  
Jo Ann Eder  
Wallace and Charlotte Ernst  
Sandra and Andrew Faber  
Christopher Field and Nona Chiariello  
W. K. Ford  
Wendy Freedman and Barry Madore  
Stephen Gao and Kelly Liu  
Arthur and Linda Gelb  
Barbara T. Grenewalt  
Claire M. Haldan  
Russell Hemley and Amanda Davis  
Toby M. Horn  
Charles B. Hunter  
Neil and Lorna Irvine  
Kathleen E. Jolly  
Paul and Carolyn Kokulis  
G. G. Kowalczyk  
Gerald D. Laubach  
Alan and Agnes Leshner  
Gilbert and Karen Levin  
Johng K. Lim  
Lawrence H. Linden  
Donald H. McClelland  
Lauren A. Meserve  
Robert Metcalf  
Alan Naye  
Peter Nicholas  
Catherine A. Piez  
Frederick H. Prince  
Alice Rivlin and Sidney Winter  
Vera C. Rubin  
Roger W. Sant  
David Singer  
Allan Spradling and Constance Griffin  
Tetsuo Takanami  
Michael J. Tempero  
John R. Thomas, Ph.D.  
Ian Thompson  
Scott B. Tollefsen  
Thomas and Mary Urban  
Frederick P. Woodson  
Mary Lou Zoback  

**Under $1,000**
Anonymous  
Judith C. Adams  
Jagannadham Akella  
David Applegate  
Sheldon Applegate  
Lucy S. Archuleta  
Louis G. Arnold  
Lawrence C. Baldwin  
Ryan B. Bales  
Patti P. Barkett  
John F. Barton  
Manuel N. Bass  
George and Sonja Beall  
Harvey E. Belkin  
Mary M. Bellor  
Jack Bennett  
James Bennett  
Barbara Benton  
Richard J. Bergemann  
Jack Berger  
John and Nancy Bergstrom  
Leslie C. Berlowitz  
Giuseppe Bertani  
Somdev Bhattacharji  
Beverlee Bickmore  
Paula Bienvenfeld  
Lloyd Biscomb  
Alison Black  
Henry C. Black  
Robert and Anita Blumenthal  
Jenny K. Bong  
Tom I. Bonner  
Kurt R. Borski  
Page Boteler  
Horst Braunlich  
Winslow R. Briggs  
Peter C. Brockett  
Kenneth Brockman  
Harold and Naomi Brodsky  
Jeanette S. Brown  
Khaki Brown  
Lore E. Brown  
David and Rosemary Buden  
Michele G. Bullock  
Allan B. Burdick  
Marjorie Burger  
Bernard F. Burke  
Gordon Burley  
Donald M. Burt  
Shirley L. Burt  
Christopher Cabill  
John A. Caldwell  
Allan Campbell  
Raymond Carlson  
Carol L. Carpenter  
Timothy J. Carr  
Dana Carroll  
Morris J. Chalick  
Catherine Chatman  
Liang-Chen Chen  
Wen P. Chen  
Timothy Childers  
Rebecca Chojnacki  
Paul S. Clark  
Mary M. Coder  
Ronald E. Cohen  
John R. Coleman  
Lauren and Cathy Collof  
Rita R. Colwell  
Jason Conradt  
John D. Cooper  
Jonathan Coopersmith  
José M. Correia Neves  
William E. Cramer  
John and Anne Crawford  
Ronald Croadsdale  
John R. Cronin  
Daniel L. Crotty  
William L. Crowell  
Martin Czigler  
Howard H. Dana  
Edward E. David  
John E. Davis  
Israel DeLeon  
John B. Denniston  
Charles T. De Vault  
Robert C. DeVries  
John M. Dick  
William S. Dickey  
John F. Dilley  
John B. Doak  
Bruce R. Doe  
Lauren Drerup  
James A. Drummond  
Thomas S. Duffy  
J. T. Dutro  
David Dyregrov  
Jayme R. Epstein  
Mark Fagnano  
John Farhood  
Jerel Fast  
Rosalie B. Fedoruk  
Raul Fernandez  
Matthew Fetissoff  
Oscar Fitzgerald  
Lucy M. Flsh  
Marilyn Fogel and  
Christopher Swarth  
Frederick Forro  
Christine E. Foster  
Joshua Foster  
Laurence W. Fredrick  
Bonnie Freeman  
Fred S. Fry  
Joseph H. Gainer  
Esra Galun  
David Gambrel  
Joan Gantz  
Susanne E. Garvey  
Lind S. Gee  
Domenico Gellera  
Jane R. Geuder  
M. C. Gilbert  
Kirsten H. Gildersleeve  
Theresa L. Goedeke  
James F. Goff  
Ellen S. Gold  
Cordelia M. Goldstein  
David J. Goldston  
John J. Govoni  
Barbara Graves  
Thomas and Josephine Greeley  
Scott and Emma Gromacki  
Timothy L. Grove  
John J. Gurney  
Necip Guven  
William and Dorothy Hagar  
B. Fenton Hall  
Mildred V. Hallberg  
Steven J. Hamilton  
Pau. A. Hanle  
Jessica Hannah  
Michelle R. Harmon  
Walter A. Harrison  
Stanley R. Hart  
William K. Hart  
Karl M. Hartmann  
Steven A. Hauck  
Erik H. Hauri  
Gordon S. Hawkins  
Gregory Head  
Norris C. Hekimian
Robert G. Goelet

Trustee Robert G. Goelet has been a guiding force on the Carnegie board of trustees for more than a quarter of the institution’s existence. When he was elected in 1980, he was president of Goelet Realty Company, vice president of Goelet Estate Company, director of the Chemical Bank, and president of the American Museum of Natural History. His unique blend of business and nonprofit experience, along with his love of biology, made him a perfect fit for Carnegie.

Goelet is a member of the Finance Committee, a post he has held since 1981. In the early 1980s he was also a member of the Nominating Committee, chairing it in 1984. He has been an integral part of the institution’s history and a contributor to its scientific prosperity, helping steer it through the business challenges of the Observatories’ Magellan Telescope Project. He was involved with the relocation of the Geophysical Laboratory (GL) and the Department of Terrestrial Magnetism to one site, and has watched GL become a driving force in a half dozen major international research alliances and Terrestrial Magnetism evolve into a powerhouse for planetary studies. He saw the launching of Carnegie’s educational programs, First Light and the Carnegie Academy for Science Education, witnessed the construction of the Maxine Singer Building at Embryology, and was party to establishing the first new department in over 80 years, the Department of Global Ecology.

For three decades, Goelet has consistently supported the institution’s initiatives. He has generously contributed to every capital campaign, challenge grant, and annual fund drive, and he has supported instrumentation, buildings, the Global Ecology fund, and more. He is a member of the Edwin Hubble Society.
Judith B. Morenoff
John Morrow
David J. Mossman
John Mothersole
Gary G. Mrenak
Manning Muntzing
Charles G. Myers
Ralph Nader
Ralph H. Nafziger
Claude Negre
Norman and Georgine Neureiter
Phillip and Sonia Newmark
Richard L. Nielsen
Peter J. Nind
Adrienne Noe
Paul G. Nyhus
Michael E. Ollinger
Peter and Janyce Olsen
Peter Olson
Gilbert Omenn and Martha Darling
Marcos Ortiz
John Overholt
Vani Padmanabha
Nicholas Pannunzio
David C. Parmelee
R. B. and Deborah Parry
Thomas H. Peebles
Natalia G. Perez
Joseph and Jean Platt
Thomas Prather
Daniel W. Pugh
Shirley Raps
Martin Ratliff
Donald G. Rea
Patrick Reavey
Robin Reichlin and
Steven Bohlen
Minocher Reporter
Yaron Reshef
Benjamin Richter
Herman H. Rieke
Kathryn L. Ries
Grace Rissetto
Marianne Ritchie
Stafford Ritchie
Daniel Robbins
Elizabeth Romano
Milt Roney
Ingrid Rose
Anne G. Rosenwald
Christopher Rubel
Douglas and Karen Rumble
Raymond E. Ruth
Nadia M. Saad
Selwyn and Pamela Sacks
Adam Sandler
Akira Sasaki
Martha K. Savage
Anne K. Sawyer
Maarten Schmidt
Wendy S. Schonman
Joyce R. Schwartz
François and Linda Schweizer
Malcolm Scully
Nobumichi Shimizu
Ray Shoenfelt
Walter Shropshire
Tom M. Siegel
Randolph Sim
Helen Simms
Mary E. Simon
Frederick J. Simons
David W. Simpson
Virginia B. Sisson
Brian G. Smith
Christine D. Smith
John T. Smith
Michael Smith
Jordan Sorensen
Phillip K. Sotel
Jean Stadel
Seth Stein
Erich W. Steiner
Susan Strain
Nathan Strug
Joan T. Suwalsky
Thomas H. Symons
Kathleen Taimi
Gary R. Tanigawa
Constance P. Tate
Lawrence A. Taylor
Leslie C. Taylor
Mack Taylor
Thomas M. Tekach
Jerylyn Teplin
Mira Thompson
Norbert Thonnard
Tom Thornbury
Kristy Tiampo
Peter A. Tinsley
Charles H. Townes
Mary S. Travis
Kay Tremaine
Jonathan Tuerk
Michael S. Turner
Frits Van Beek
Suzan van der Lee
W. K. VanNewkirk
Arthur H. Vaughan
David Velinsky
Clayton Vickland
Daniel and Eloise Vitiello
Richard J. Walker
Jessica M. Warren
Linda Warren
Wayne H. Warren
Johannes Weertman
James H. Whitcomb
Edward White
Evan Williams
James E. Williams
Ian Wilson
Evelyn M. Witkin
James A. Wood
Julianne Worrell
Michael J. Worth
Frank K. Wyatt
Robert Yamartino
Charles Yanofsky
Irving and Carol Yoskowitz
Richard S. Young
Robert A. Young
Violet K. Young
Judith P. Zauderer
Timothy A. Zimmerlin
Wanna M. Zinsmaster

Foundations and Corporations

$1,000,000 or more
Anonymous
Gordon and Betty Moore Foundation
Alfred P. Sloan Foundation

$100,000 to $999,999
The Ahmanson Foundation
The Gayden Family Foundation
The Hearst Foundation, Inc.
Andrew W. Mellon Foundation
Ambrose Monell Foundation
The San Simeon Fund, Inc.

$10,000 to $99,999
Anonymous (2)
Association of American Medical Colleges
Baltimore Community Foundation
The Bodman Foundation
The Brinson Foundation
The Margaret A. Cargill Foundation
Carnegie Institution of Canada/Institution Carnegie du Canada
Chesapeake Bay Trust
Dow AgroSciences LLC
Fondation de France
Herman Frasch Foundation for Chemical Research
Golden Family Foundation
Robert and Margaret Hazen Foundation
Richard W. Higgins Foundation
The Hoffberger Foundation
The G. Harold and Leila Y. Mathers Charitable Foundation
The McMurtry Family Foundation
Shippy Foundation
Sun Microsystems, Inc.
Syngenta Biotechnology, Inc.
The William and Nancy Turner Foundation
The Sidney J. Weinberg, Jr., Foundation
William K. Gayden

In 1998 David Swensen, then chairman of the Finance Committee, recommended that Bill Gayden, founder, chairman, and chief executive officer of Merit Energy Company, present information about his company to the board as a possible Carnegie investment. Merit, founded in 1989, is a privately owned oil and gas company that acquires and exploits mature petroleum reserves. Little did anyone suspect that Gayden harbored a passionate interest in astronomy and would later become a valued board member. Everyone on the Finance Committee was captivated by Gayden’s presentation, not just because of the success of the company, but because they found him to be an independent and creative thinker.

Some years after Gayden’s presentation, the Nominating Committee invited him to join the board. By that time Gayden had become familiar with Carnegie’s high-risk, high-reward science—a natural fit for a successful entrepreneur. Gayden was elected to the board in 2002. Since then he has served as a member of the Research and Budget and Operations committees. He also served as a member and then chairman of the Audit Committee. His business instincts and insights were critical as he helped the institution navigate the rough waters it encountered as it modified its new business practices.

From the very beginning, Gayden has been a particularly strong advocate for the bold and ambitious Giant Magellan Telescope project. The one-of-a-kind venture, on course for completion in 2019, has benefited tremendously from his gifted counsel and support. Gayden has consistently supported other high-priority needs at Carnegie over the years. He is a member of the Vannevar Bush Society.
Lifetime Giving Societies

The Carnegie Founders Society

Andrew Carnegie, the founder of the Carnegie Institution, established it with a gift of $10 million. Although he ultimately gave a total of $22 million to the institution, his initial $10 million gift represents a special level of giving. In acknowledgment of the significance of this initial contribution, individuals who support Carnegie’s scientific mission with lifetime contributions of $10 million or more are recognized as members of the Carnegie Founders Society.

Caryl P. Haskins*
William R. Hewlett*

The Edwin Hubble Society

The most famous astronomer of the 20th century, Edwin Hubble, joined the Carnegie Institution in 1919. Hubble’s observations shattered our old concept of the universe. He proved that the universe is made of collections of galaxies and is not just limited to our own Milky Way—and that it is expanding. This work redefined the science of cosmology. Science typically requires years of work before major discoveries like these can be made. The Edwin Hubble Society honors those whose lifetime support has enabled the institution to continue fostering such long-term, paradigm-changing research by recognizing those who have contributed between $1,000,000 and $9,999,999.

D. Euan and Angelica Baird
Michael and Mary Gellert
Robert G. and Alexandra C. Goelet
William R. Hearst III
Richard E. Heckert*
Kazuo and Asako Inamori
Burton and Deedee McMurtry
Jaylee M. Mead
Cary Queen
Deborah Rose, Ph.D.
William J. Rutter
Thomas and Mary Urban
Sidney J. Weinberg, Jr.*
The Vannevar Bush Society

Vannevar Bush, the renowned leader of American scientific research of his time, served as Carnegie’s president from 1939 to 1955. Bush believed in the power of private organizations and wrote in 1950, “It was Andrew Carnegie’s conviction that an institution which sought out the unusual scientist, and rendered it possible for him to create to the utmost, would be worth while [sic] . . .” He further said that “the scientists of the institution . . . seek to extend the horizons of man’s knowledge of his environment and of himself, in the conviction that it is good for man to know.” The Vannevar Bush Society recognizes individuals who have made lifetime contributions of between $100,000 and $999,999.

Anonymous (3)
Bruce and Betty Alberts
Daniel Belin and Kate Ganz
Didier and Brigitte Berthelemot
Gary P. and Suzann A. Brinson
Donald and Linda Brown
A. James Clark
Tom and Anne Cori
Jean and Leslie Douglas
Bruce Ferguson and Heather Sandiford
Stephen and Janelle Fodor
William and Cynthia Gayden
Robert and Margaret Hazen
Antonia Axson Johnson and Goran Ennerfelt
Gerald Laubach
Lawrence H. Linden
John D. Macomber
Steven L. McKnight
Richard A. and Martha R. Meserve
Al and Honey Nashman
Evelyn Stefansson Nef*
Vera C. Rubin
Allan R. Sandage*
Christopher and Margaret Stone
William and Nancy Turner

Second Century Society

The Carnegie Institution is now in its second century of supporting scientific research and discovery. The Second Century Society recognizes individuals who have remembered, or intend to remember, the Carnegie Institution in their estate plans and those who have supported the institution through other forms of planned giving.

Bradley F. Bennett*
Richard Buynitzky*
Eleanor K. Dalton
Nina V. Fedoroff
Kirsten H. Gildersleeve
Robert and Margaret Hazen
Paul and Carolyn Kokulis
Gilbert and Karen Levin
Evelyn Stefansson Nef*
Allan R. Sandage*
Leonard Searle*
Maxine and Daniel Singer
John R. Thomas, Ph.D.
Hatim A. Tyabji

*Deceased
Members were qualified with gift records we believe to be accurate.
If there are any questions, please call Mira Thompson at 202.939.1122.
Honors & Transitions

Honors

Administration
Carnegie president Richard Meserve was appointed to the Blue Ribbon Commission on America’s Nuclear Future by Secretary of Energy Steven Chu in 2009. He also received an honorary doctorate from Washington College.

Toby Horn, codirector of the Carnegie Academy for Science Education, received the 2009 Bruce Alberts Award for Excellence in Science Education from the American Society of Cell Biology in December 2009.

Embryology
Staff member Douglas Koshland was elected to the National Academy of Sciences in April 2010.

Research technician Dianne Williams received Carnegie’s Service to Science Award in May 2010.

Geophysical Laboratory
Director Emeritus Charles Prewitt received the first IMA Medal for Excellence in Mineralogy from the International Mineralogical Association at the Goldschmidt Conference in 2009.

Staff member Yingwei Fei was elected a 2010 fellow of the American Geophysical Union.

Global Ecology
Department director Christopher Field was elected to the American Academy of Arts and Sciences in April 2010. He was also awarded the Heinz Award in September 2009.

Staff member Kenneth Caldeira was elected a 2010 fellow of the American Geophysical Union.

Observatories
Frank Perez, site manager/telescope engineer, received Carnegie’s site manager/telescope engineer, received Carnegie’s Service to Science Award in May 2010.

Plant Biology
Director Emeritus Winslow Briggs was awarded the 2009 International Prize for Biology by the Japan Society for the Promotion of Science.

Terrestrial Magnetism
Staff member Steven Shirey was elected a 2010 fellow of the American Geophysical Union.

Transitions

Trustee emeritus Richard Heckert died in January 2010.

Staff member Paul Silver of Terrestrial Magnetism died in a car accident with his daughter on August 7, 2009.

Embryology staff associate Judith Yanowitz became an assistant professor at the Magee-Womens Research Institute in Pittsburgh in November 2009.

Martin Jonikas joined the Department of Plant Biology as a young investigator in 2010.