Press Releases

Monday, November 10, 2014

Audio
Cells often face low-oxygen conditions at night. When this happens, some organisms such as the single-cell alga Chlamydomonas are able to generate cellular energy from the breakdown of sugars without taking up oxygen.Although critical to the survival of common aquatic and terrestrial organisms that are found all over the planet, many of the details regarding this low-oxygen energy creation process are poorly understood.

Thursday, November 6, 2014

Audio
As animals age, their immune systems gradually deteriorate, a process called immunosenescence. It is associated with systemic inflammation and chronic inflammatory disorders, as well as with many cancers. The causes underlying this age-associated inflammation, and how it leads to diseases, are poorly understood. New work sheds light on one protein’s involvement in suppressing immune responses in aging fruit flies. 

Tuesday, October 28, 2014

Audio

Proteins are the machinery that accomplishes almost every task in every cell in every living organism. The instructions for how to build each protein are written into a cell’s DNA. But once the proteins are constructed, they must be shipped off to the proper place to perform their jobs. New work describes a potentially new pathway for targeting newly manufactured proteins to the correct location. 

Monday, October 20, 2014

Audio
Hydrogen responds to pressure and temperature extremes differently. Under ambient conditions hydrogen is a gaseous two-atom molecule. As confinement pressure increases, the molecules adopt different states of matter—like when water ice melts to liquid. Scientists, including Carnegie’s Alexander Goncharov, combined hydrogen with its heavier sibling deuterium and created a novel, disordered, “Phase IV”-material. The molecules interact differently than have been observed before, which could be valuable for controlling superconducting and thermoelectric properties of new hydrogen-bearing materials.

Thursday, October 16, 2014

Audio
When it comes to cellular architecture, function follows form. Plant cells contain a dynamic cytoskeleton which is responsible for directing cell growth, development, movement, and division. So over time, changes in the cytoskeleton form the shape and behavior of cells and, ultimately, the structure and function of the organism as a whole. New work hones in on how one particular organizational protein influences cytoskeletal and cellular structure in plants, findings that may also have implications for cytoskeletal organization in animals. 

Wednesday, October 8, 2014

Astronomer and photographer Yuri Beletsky captured today's lunar eclipse from Carnegie's Las Campanas Observatory

Monday, October 6, 2014

Sean Solomon, director of Carnegie’s Department of Terrestrial Magnetism from 1992 until 2012 will receive the nation’s highest scientific award, the National Medal of Science at a White House ceremony later this year.

Thursday, September 25, 2014

Audio
Water was crucial to the rise of life on Earth and is also important to evaluating the possibility of life on other planets. Identifying the original source of Earth’s water is key to understanding how life-fostering environments come into being and how likely they are to be found elsewhere. New work found that much of our Solar System’s water likely originated as ices that formed in interstellar space. 

Thursday, September 25, 2014

Audio
A team has, for the first time, discovered how to produce ultra-thin "diamond nanothreads" that promise extraordinary properties, including strength and stiffness greater than that of today's strongest nanotubes and polymer fibers. Such exceedingly strong, stiff, and light materials have an array of potential applications, everything from more-fuel efficient vehicles or even the science fictional-sounding proposal for a “space elevator.” 

Thursday, September 25, 2014

Audio
Gallium arsenide, GaAs, a semiconductor composed of gallium and arsenic is well known to have physical properties that promise practical applications. In the form of nanowires and nanoparticles, it has particular potential for use in the manufacture of solar cells and optoelectronics in many of the same applications that silicon is commonly used. But the natural semiconducting ability of GaAs requires some tuning in order to make it more desirable for use in manufacturing these types of products.